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Cooperative Dynamics in Two Dimensions
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We report results from molecular dynamics simulations of cooperative motion in a quasi-two-
dimensional system of colloid particles. We find that the onset of the deviation of the single-particle
displacement distribution from Gaussian form starts in the liquid phase and extends, with increasing
magnitude, through the hexatic phase into the crystalline phase. The time for which the deviation is
maximum increases exponentially with the density. As the density increases toward the hexatic phase a
third dynamical relaxation mode emerges. We argue that the collective motion is generated by
superpositions of instantaneous normal mode vibrations, with lifetimes that increase with the density,
along paths with strong bond-orientation correlation.
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that one or the other is dominant in different time do-
mains. In this Letter we investigate the density depen-

properties of colloidal particles interacting with similar
but slightly different pair potentials [15].
The Gaussian form of the single-particle displacement
distribution is obtained, rigorously, for two limiting
cases. The first case is for t ! 0, representing ballistic
motion, leading to a mean squared displacement that is a
quadratic function of time. The second case is for t ! 1,
describing Brownian motion (hydrodynamic regime),
leading to a mean squared displacement that is a linear
function of time. In both of these time regimes the par-
ticle displacement vector orientations are randomly dis-
tributed. Deviations from a Gaussian distribution signal
correlations between the displacement vectors of the par-
ticles. In three dimensions the interpolation between the
short and long time dynamics extends over a short time
period and the deviations from Gaussian behavior are
very small [1,2]. However, strong deviations have been
observed in dense glass-forming liquids just above the
glass transition [3–8].

Recently, it has been shown, both computationally [9–
12] and experimentally [13,14], that the motion of a
particle in a dense quasi-two-dimensional (Q2D) liquid
is heterogeneous and the single-particle displacement
distribution has a very large non-Gaussian component.
Moreover, it is found that in a Q2D liquid the single-
particle displacement involves cooperative stringlike mo-
tion in some time regimes. Marcus, Schofield, and Rice
found that in a dense Q2D colloid suspension the self-part
of the van Hove function develops a second peak due to an
activated process in which a particle hops to one of the
positions that was formerly occupied by one of the cage
particles that initially surrounded it [13]. Cui, Lin, and
Rice [14] found that the one-particle displacement dy-
namics can be described in terms of three relaxation
processes; the contributions of these processes to the
particle mean squared displacement vary with time so
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dence of the deviation of the single-particle displacement
distribution from Gaussian form as the system transforms
from liquid through hexatic to the solid phase.

The model systems that we study consist of a single
layer, with N � 2016 particles, placed in a quasi-two-
dimensional simulation box. The calculations were car-
ried out, and the results are reported below, in terms of
the reduced variables r� � r=�, z� � z=�, T� � kBT=",
�� � ��2, t� � t�kBT=m�2�1=2, m � 1, with � the di-
ameter of the particle, � the number density, m the
mass of the particle, t the time, and 3:689" is the value
of the interparticle potential at r� � 1:000. We character-
ize the state of the system with the two-dimensional
number density � � N=A, where A is the area of the
simulation cell in the x-y plane. The interparticle poten-
tial was represented by u�r�� � A�r� � 1=2��� with A �
2� 10�19 and � � 64. This functional form is very
nearly a hard-core repulsion but has continuous deriva-
tives. The confinement of the particles along the z axis is
affected by the action of a one-body z-dependent external
field, uext�z

�� � D"�z��� . The coordinate z� is the dis-
tance from the center of the cell to the center of mass
of the particle, � � 24 and D � 2� 1024; this potential
confines the particles as if they were in a cell with an
effective height of H � 1:20�. The molecular dynamics
(MD) simulations were performed in the microcanonical
ensemble using the ‘‘velocity Verlet’’ algorithm. The dis-
tance at which the potential was cut off was 1:5� and the
time step used was, in reduced units, 5� 10�4; the asso-
ciated rms fluctuation in total energy did not exceed one
part in 105. Equilibration for at least 1:2� 107 MD steps
preceded the time-dependent data collection stage.
Additional description of the methods used can be found
in a previous report that investigated the thermodynamic
2004 The American Physical Society 035502-1
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Analysis of the lateral-pressure-density isotherm and
the character of the structural (translational and bond-
orientation) properties of the system indicate that for
densities �� 	 0:860 the system is in the liquid phase,
for densities 0:870 	 �� 	 0:890 it is in the hexatic phase
and for densities �� 
 0:900 it is in the solid phase. As a
measure of the deviation of the single-particle displace-
ment from Gaussian form we calculate the non-Gaussian
parameter �2�t�. It is plotted in Fig. 1 as a function of the
reduced time for 0:860 	 �� 	 0:920. The value of �2�t

��
exhibits a maximum whose magnitude increases as the
density increases. The time for which �2�t�� is maximum,
t�max, increases exponentially with the density. Despite the
small amplitude of �2�t�� for �� 	 0:860, analysis of the
trajectories reveals correlated heterogeneous dynamics.
However, as the density increases towards the density
that supports the hexatic phase, �� � 0:870, there is a
sharp increase in the magnitude of �2�t

�� that extends
into the solid phase. Note that the time for which the
maximum of �2�t�� is observed encompasses many colli-
sion events. For example, the maximum for �� � 0:890
occurs at around t�max � 35 corresponding to 180 collision
times. For �� � 0:910 the maximum of �2�t

�� is observed
at t�max � 3000 which corresponds to 1:7� 104 colli-
sion times.

In Fig. 2 we display the lateral mean squared single-
particle displacement as a function of the reduced time on
a logarithmic scale. For time shorter than the particle
collision time (t� 	 0:1) the plots for all densities overlap
as expected for density independent ballistic motion (the
slope is equal to 2). At long time the motion is diffusive
(the slope is equal to 1) for all densities even for those that
correspond to the solid phase. As the density approaches
the transition to the hexatic phase from below a third
dynamical relaxation mode, at intermediate time,
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FIG. 1 (color online). The non-Gaussian parameter �2�t
�� as a

function of the reduced time, t�, for two-dimensional number
densities 0:860 	 �� 	 0:920. The x axis is plotted on a loga-
rithmic scale.

035502-2
emerges. It represents a slowing down in the particle
motion due to the ‘‘cage effect.’’ The slope for this inter-
mediate dynamical relaxation mode is sublinear for den-
sities lower, and vanishes for densities higher, than the
melting density (�� � 0:895). This is a consequence of
dynamical heterogeneity; the system consists of dynami-
cally ‘‘ordered’’ and ‘‘disordered’’ domains. The motion
of the particles in the disordered domain during tmax is
cooperative and quasi-one-dimensional (stringlike),
yielding the observed deviation from the Gaussian form
of the displacement distribution. The resulting displace-
ment dynamics, therefore, has a mixed character. Note
that the onset of the long time dynamical relaxation
mode is the same as t�max identified in Fig. 1.

Figure 3 shows the trajectory of the particles for a
section of the simulation box for �� � 0:880. The time
covered is in the range 0 	 t� 	 100, which is about
6t�max. For this density and for this time interval the
mean squared displacement, h�r2xy�t� � 100�i � 3:78.
Thus, the trajectories of most of the particles in this
figure represent diffusion for a distance of about two
particle diameters. The correlated and heterogeneous dy-
namics of the particles can be clearly identified as well as
the diffusive paths which are along the directions with
strong bond-orientation correlation.

The time-dependent distribution of the particle motion
was analyzed using the van Hove functions. At short and
long times we find that the self-part of the van Hove
function is almost identical to the distribution derived
from the Gaussian approximation. As shown above, there
is a correlation between the location of tmax and the time
for which the diffusive behavior begins. We find that at
the transition from intermediate time to long time the
single-particle displacement distribution exhibits strong
deviation from the Gaussian approximation. Figure 4(a)
displays the self-part of the van Hove function for 4 times
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FIG. 2 (color online). The lateral mean squared displacement
as a function of the reduced time, t�, for two-dimensional
number densities 0:870 	 �� 	 0:920. Both axes are plotted on
a logarithmic scale.
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FIG. 4 (color online). The self-part (a) and the distinct-part
(b) of the van Hove function as a function of the reduced lateral
interparticle distance, plotted for �� � 0:890 at four values of
time around t�max  35. The former is multiplied by the radial
element 2�rxy and the latter is normalized by the reduced two-
dimensional number density.

FIG. 3. A section of the simulation box for �� � 0:880 show-
ing the particle trajectories. The total number of frames is 41
separated by time interval �t� � 2:5, so that the duration of
each trajectory is t� � 100. At this density, t�max � 16 and
h�r2xy�t

� � 100�i � 3:78.
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around t�max. The curves exhibit multiple maxima indicat-
ing that the dynamics is heterogeneous and that the
particles experience cooperative ‘‘jumps’’ from one site
to another. Thus, at specific values of time there are
different subsets of particles that travel for different
distances. The fact that these maxima are separated by
a distance that corresponds the particle diameter indi-
cates that the jump dynamics, over 2–3 particle diame-
ters, is in one dimension. Figure 4(b) displays the
corresponding distinct part of the van Hove function. It
is evident that as t� increases the probability of finding a
particle at the location where another particle resided at
t� � 0 increases dramatically. The minimum of the
probability distribution at r�xy � 0:5 confirms the picture
of jumps rather than continuous diffusion.

Correlated jump dynamics also occurs in the solid
phase. Figure 5(a) displays the self-part of the van Hove
function for �� � 0:910 at times in the range 2500 	
t� 	 140 000. The curves are similar to those shown in
Fig. 4(a). However, the number of maxima is larger and
they are better resolved, which indicates greater hetero-
geneity and stronger dynamical correlations. Figure 5(b)
displays the corresponding distinct part of the van Hove
function; it shows a large increase at rxy � 0:0 as the time
increases while for larger values of rxy it is hardly
changed. Figure 2 shows that at very long time the colloid
particle motion for all densities, even for densities in the
solid phase, is diffusive.

The results presented in this Letter reveal a strong
correlation between the dynamical and the thermody-
035502-3
namic behavior of a quasi-two-dimensional system.
Although dynamical heterogeneity and correlated motion
are present in the liquid phase, at the liquidus the distri-
bution of single-particle displacements develops a strong
deviation from Gaussian form and the mean squared
displacement as a function of time exhibits a third re-
laxation region, at intermediate times, that is character-
ized by a sublinear slope. The onset of this behavior is
associated with the transition from the liquid to a hexatic
phase with long-ranged bond-orientation order. At the
solidus this sublinear slope becomes zero for intermedi-
ate time.

The continuous behavior of this mode of motion from
the liquid phase through the hexatic phase and into the
crystalline phase suggests that it arises from the same
physical phenomenon. It is logical to assign the driver for
motion in the solid phase to superpositions of normal
mode vibrations along paths that generate activated hop-
ping of a particle [16,17]. In the liquid phase the lifetimes
of the normal modes vibrations are very short due to
035502-3
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FIG. 5 (color online). Same as Fig. 4 but for a density that
corresponds to the solid phase, �� � 0:910.
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preemption by independent single-particle motion [18],
but instantaneous normal modes can be defined, and are
found to be very useful descriptors [19,20]. Instantaneous
normal modes are defined by expansion of the potential
energy of the system about the positions of the particles in
a frozen (instantaneous) configuration. Because not all
particles are at potential minima, some of the instanta-
neous modes are imaginary. Nevertheless, they provide
an interesting and often useful description of atomic
dynamics in a liquid.

As the density increases (or the temperature decreases)
the lifetimes of the instantaneous normal vibrations in-
crease, thereby allowing more effective competition be-
tween cooperative hopping motion and independent
035502-4
particle motion, so that the cooperative hopping becomes
increasingly dominant [21].We suggest that the correlated
motion, even at densities lower than the solidus density, is
a result of superposition of instantaneous normal mode
excitations with energy greater than the energy barrier for
hopping. The natural hopping directions are along axes
with strong bond-orientation correlation that are devel-
oped at the transition to the hexatic phase.
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