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Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension
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Recent experiments have demonstrated that the deviation of the single-particle displacement distribution
from Gaussian form in a dense quasi-two-dimensional colloid suspension is a result of heterogenous dynamics
that involves cooperative motions of neighboring colloid parti¢lesChem. Phys47, 9142 (2001)]. In this
paper, we report the results of molecular dynanid®) simulations of a quasi-two-dimensional assembly of
nearly hard-sphere colloid particles. The colloid-colloid interaction we use is short ranged and everywhere
repulsive; it is related to the Marcus-Ri@R) and modified MR interactions used in a previous st{flyys.

Rev. E58, 7529(1998)]. As is the case for those systems, the one we study supports liquid, hexatic, and solid
phases. Our calculations show that the deviation of the single-particle displacement distribution from Gaussian
form is present in the liquid phase, and that a sharp increase in its magnitude occurs at the liquidus density and
extends into the crystalline phase. For densities greater than the liquidus density we find three dynamical
relaxation processes that include, at intermediate times, a slowing down in the rate of growth of the diffusive
displacement of a particle due to the cage effect. As the density increases toward the solidus density, the
dependence of the mean squared displacement on time, at intermediate times, changes from sublinear to zero.
The onset of the long-time relaxation mode corresponds to the time at which the deviation of the particle
displacement distribution from Gaussian form is a maximum. At this time, which increases exponentially with
the density, the self-part of the van Hove function exhibits multiple maxima with respegttide the distinct

part of the van Hove function is a maximum at the origin, thereby signaling jump dynamics. At long times the
particle mean square displacement has diffusive character at all densities including solid phase densities. A
remarkable feature of our findings is the continuity of character of the particle displacement from the liquid
phase through the hexatic phase and into the solid phase. Cooperative jumps that lead to diffusive process in
crystals can be explained by a mechanism that involves many such correlated hops in random locations and
random directiongbut along the crystallographic axebereby generating effective random walk behavior. We
argue that the collective motion we have found is generated by superpositions of instantaneous normal mode
vibrations along diffusive paths. The diffusive paths are along the directions with strong bond orientation
correlation, and start to grow in amplitude rapidly on entry into the hexatic phase.

DOI: 10.1103/PhysRevE.68.061508 PACS nuni)er64.70.Dv, 82.70.Dd

[. INTRODUCTION wherea(t) is obtained by expressing the mean squared dis-
placement(r?(t)) as a spatial integral o54(r,t). Then
The character of one-particle motion in a medium can bax(t)=1Kr?(t)). If G4(r,t) has a Gaussian form the aver-

used to monitor the contributions of cooperative effects toages of the even-power moments of the single particle dis-
the particle displacement dynamics. In an ideal gas the digplacement distribution satisfy the following relation:
placement of a particle is independent of the displacements
of the other particles. Then the probability that a particle will (r¥"(t)y=n1(r?(t))". 2
move a distance in time t, G4(r,t), is proportional to the
probability of its having a velocity with the magnitudé as ~ Therefore, deviations from the Gaussian approximation can
given by the Maxwell-Boltzmann distribution. The probabil- be measured by a time-dependent terp(t)
ity distribution G4(r,t) known as the self-part of the van <r2“(‘)>

Hove function is, therefore, proportional te ™2, ay(t)= ———"
This free-particle behavior is applicable to all media at all ni{r(t))"
densities in the limitt—0. In the hydrodynamic limitt
—oo, when cooperative effects dominate the particle dis-Deviations from the Gaussian distribution of particle dis-
placement in a dense liquid, the solution of the diffusionplacements that occur in the intermediate time regime in
equation also yields a Gaussian form @g(r,t) [1]. In both  three-dimensional systems are very sni@t4]. In these
limits, G4(r,t) in two dimensions can be written as cases the first correction to the Gaussian approximation is
typically 10% or less of the leading term and successive
terms are even smaller. Stronger deviations from Gaussian
Gy(r )= it)e*“(‘)rz, (1) _behavior has been obser\_/_ed in dense glass-forming liquids
T just above the glass transitigb—8|.

()
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Recently, it has been shown, both computationily12] particle displacement at intermediate times had mixed char-
and experimentally13,14], that the motion of dense two- acter due to contributions from several different kinds of
dimensional liquids is heterogenous and the single-particlenotions.
displacement distribution has a very large non-Gaussian In three-dimensional systems, deviations of the mean
component. Moreover, it is found that in these dense liquidsquared displacement of a particle from Gaussian behavior
the single-particle displacement involves cooperative stringhave been reported from the results of experiments per-
like motions in some time regimes. formed on bulk colloidal suspensiorjg,8] and on super-

Consider the case of a simple fluid. For times shorter thaiooled orthoterphenyl16]. Such deviations have also been
the average collision time the particle motion is ballistic, reported from the results of simulations of the hard-sphere
hence the mean squared displacement is a quadratic functidéiquid [17], Lennard-Jones binary mixtur¢§,6,18,19, and
of time. At long times, the stochastic nature of successivgolymer melt§20-232. In all of the cases cited the findings
interactions with the neighboring particles generates dynamare interpreted in terms of the transition to the glass state.
ics that can be represented by a Brownian motion model. lifowever, in the quasi-two-dimensional systems mentioned
this regime the mean squared displacement of a particle is @bove, the dense colloidal suspensions do not exhibit a glass
linear function of time. In three dimensions the interpolationtransition; rather, they freeze to form a hexagonal crystalline
between these two time regimes extends over a short timghase.
period and the deviations from Gaussian behavior are very Mode-coupling theory predicts that three-dimensional
small; these deviations can be accounted for by memorglense liquids near the glass transition exhibit a distinct sepa-
function analysis of the autocorrelation function of the ran-ration of relaxation time scales, specifically a slow global
dom force. However, in a high density two-dimensional lig- relaxation identified as the-relaxation process and an inter-
uid the asymptotic diffusive behavior is reached very slowly.mediate rate relaxation identified as {Beelaxation process
The large magnitude deviations from Gaussian behavior ii23—25. A theoretical analysis that incorporates the effects
the intermediate-time regime suggest that the mechanism ©f both mode coupling and binary uncorrelated collisions on
the one-particle motion of the particles is different; the lackthe memory function has been used to describe the dynamics
of vacancies in the first-neighbor shell surrounding a mol-of quasi-two-dimensional confined colloid suspensii2].
ecule (“cage effect”) inhibits large displacements and local  Diffusion in a crystal is normally accounted for by the
rearrangements can only occur through the correlated motiomotion of defects. For systems of the type we consider the
of many particles along pathways that preserve the local cormost important defect is a lattice vacancy. Almost all extant
tinuity of the system. Such local rearrangements typicallytheories of diffusion in a crystal use the assumption that atom
occur in domains which are temporarily more “fluidized” jumps into vacancies are independent of one another, hence
than the background. generate a random walR7]. In general, if the defects are

The notion of correlated motion in so-called “coopera- randomly distributed then the assumption that the motions of
tively rearranging regions” was first introduced by Adam andthe migrating particles are independent leads to a Gaussian
Gibbs for the case of dense glass-forming liquidls]. The  distribution of one-particle displacements at long time. Rice
typical size of these cooperatively rearranging regions is posand co-workers showed that the one-particle diffusion coef-
tulated to grow with decreasing temperature. ficient can be represented in terms of a superposition of the

Marcus, Schofield, and Ridel3] reported the results of normal vibrations of the crystal that have nonvanishing pro-
experimental studies that show the presence of stringlike cdections on the path between an occupied site and a neigh-
operative motions in a dense quasi-two-dimensional liquidboring vacant site[28—32. Two-dimensional solids are
They observed that the self-part of the van Hove functiorqualitatively different from three-dimensional solids. In the
developed a second peak due to an activated process farmer case, translational correlations are destroyed as
which a particle hops to one of the positions that was for-— o by long wavelength thermal fluctuatiof33—36¢. The
merly occupied by one of the cage particles that initiallyunusual character of the melting transition in two-
surrounded it. dimensional solids is described by the well known

Further studies by Cui, Lin, and Ri¢&4] found that the Kosterlitz—Thouless—Halperin—Nelson—Young(KTHNY')
one-particle displacement dynamics can be described itheory [37—41. This theory predicts that the two-
terms of three relaxation processes; the contributions of thesdimensional solid melts via a two stage process: first a con-
processes to the particle mean squared displacement vatipuous transition to a hexatic state, followed by a continuous
with time so that one or the other is dominant in differenttransition to the liquid state. Zippelius has argued further that
time domains. In particular, they found that at intermediatedue to the nonlinearity of the hydrodynamic equations in two
times the mean squared displacement has a sublinear depetimensions, the damping rates of phonon excitations in two-
dence on time, while, at long times there is an increase in thdimensional solids diverge logarithmical[##2]. Taken to-
mean squared displacement due to contributions from infregether, all of these peculiarities of two-dimensional solids
guent large displacements, of the order of a particle diameteguggest that the diffusion mechanism might also differ from
in length. The spatial configurations of the particles consisteds three-dimensional counterpart.
of dynamically ordered domains separated by fluidized In this paper, we present the results of extensive simula-
boundaries. The displacement of a particle in the fluidizedions of a quasi-two-dimensional colloid assembly. Our cal-
boundary region was correlated with the displacement of itsulations show that the deviation of the single-particle dis-
neighbors. As a consequence, the time dependence of tipdacement distribution from Gaussian form is present in the
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liquid phase, and that a sharp increase in its magnitude oc 59— L L B B B R
curs at the liquidus density and extends into the crystalline
phase. For densities greater than the liquidus density we finc 400} a 4
three dynamical relaxation processes that include, at interme
diate times, a slowing down in the rate of growth of the
diffusive displacement of a particle due to the cage effect. As
the density increases toward the solidus density, the deperg
dence of the mean squared displacement on time, at interme> 290
diate times, changes from sublinear to zero. The onset of the
long-time relaxation mode corresponds to the time at which 1.00
the deviation of the particle displacement distribution from
Gaussian form is a maximum. At this time, which increases
exponentially with the density, the self-part of the van Hove . I T
function exhibits multiple maxima with respectitovhile the 1.00 1.05 110 1.15
distinct part of the van Hove function is a maximum at the
origin, thereby signaling jump dynamics. At long times the 80—F——r——T——T—— T 11
particle mean square displacement has diffusive character ¢ , [
all densities including solid phase densities. A remarkable | b ]
feature of our findings is the continuity of character of the  e.00f .
particle displacement from the liquid phase through the 7
hexatic phase and into the solid phase. Cooperative jump. %[ ]
that lead to diffusive process in crystals can be explained by 400l -
a mechanism that involves many such correlated hops ir-?
random locations and random directigibsit along the crys- 8.001 7
tallographic axesthereby generating effective random walk I ]
behavior. We argue that the collective motion we have found
is generated by superpositions of instantaneous normal mod  1.00f -
vibrations along diffusive paths. The diffusive paths are ool N oy Sy ]

0.00

2.00 -

along the directions with strong bond orientation correlation, 015 010 005 0220 0.05 0.10 015
and start to grow in amplitude rapidly on entry into the
hexatic phase. FIG. 1. (a) The interparticle potential between colloid particles

used in this studytb) The external potential confining the particles
to a slab with height oH=1.20r. The external potential is plotted
Il. METHODS as a function of the reduced center of mass coordinate along the
vertical axis g axis) measured from the center of the cell.
The model systems that we study consist of a single layer,
with N=2016 particles, placed in a quasi-two-dimensional —a
simulation box. The simulation box is rectangular in ttye u(r*):A( r*— 5) 4
plane, with side lengths in the ratidy=7/(8/3/2); it has a
height slightly greater than the particle diamdisze below.
Periodic boundary conditions were imposed in thandy  with A=2x10 1° and «=64. The functional form in Eq.
directions, but not in the direction. The calculations were (4) is very nearly a hard-core repulsion but has continuous
carried out, and the results are reported below, in terms of theerivatives. It is plotted in Fig.(&). We note that the poten-
reduced variablesr* =r/o, z*=zlc, T*=kgTle, p* tial represented in Ed4) differs from the potential we used
=pa?, t*=t(kgT/mc?)¥? m=1, with o the diameter of previously to study the equilibrium properties of a quasi-
the particlep the number densityn the mass of the particle, two-dimensional colloid system by omission of two terms in
t the time and 3.689is the value of the interparticle poten- that potential; a narrow attractive well centered ‘at1.05
tial at r*=1.000. Although the particles can move in the and an interpolating soft repulsion.
direction under the influence of adependent one-body po- The confinement of the particles in thez directions is
tential, we choose to characterize the state of the system withffected by the action of a one-bodydependent external
the two-dimensional number densjiy= N/A, whereA is the  field. Different forms can be chosen for this field, the sim-
area of the simulation cell in they plane, since the height of plest being that for hard parallel walls. Then the extra degree
the cellH is constant in all of the simulations presented inof freedom that is introduced in the thermodynamic descrip-
this paper. The same number of particles was present in th&n of the system is the spacing between those two walls.
simulation cell for all of the densities studied. To study theBecause of their macroscopic size, colloidal spheres do not
properties of the system with different particle densities we‘feel” the atomic scale granularity of the walls, so the walls
changed the area of the simulation cell in tyeplane. can be regarded as smooth. The shape of the potential that
The interparticle potential was represented by was chosen,
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uext(Z*):Ds(Z*)gu 5 A % N
M) = 5 O(ryy— ey —Txy 1)),

is such as to confine the system to form a slab with well 90y 2mr o N(N=1) \ =1 17 (| i Xy“|)
specified heighH. In Eq. (5) z* is the distance from the ®)
center of the cell to the center of mass of the particle and
=24, D=2x 10 this potential confines the particles as if
they were in a cell with an effective height bf=1.20 (i.e.,
z*==*0.10) and is shown in Fig.(t).

The MD simulations were carried out in the microcanoni-
cal ensemble using the “velocity Verlet” algorithfd3,44).
The distance at which the potential was cut off wasrlahd
the time step used was, in reduced units,® *; the asso-
ciated r.m.s. fluctuation in total energy did not exceed on
part in 16. 1

The initial configurations for the simulations were taken P =— 2 ei60ij 10

. . . . . 6i ( )
from previous simulations that studied the thermodynamic N j=1
behavior of a similar system with the Marcus-Rice interpar-
ticle potential[45]. At each density the required temperature The sum in Eq(10) is taken over the; nearest neighbors to
was created in a preequilibration stage by multiplying theparticlei, as determined by a two-dimensional Voronoi poly-
velocities, every X 10° MD steps, by an appropriate con- gon constructiorj46]. We denote byp;; the angle between
stant. This stage was repeated until the difference betweehe vector,, and an arbitrary fixed axis. The global trans-
the average temperature of the system and the prescribégtional order parameter is defined to be the sum of the Fou-
temperaturd* = 1.0000, did not exceed>610 *in reduced  rier components of the density
units. Then the system was further equilibrated fot T0°
MD steps, and thermodynamics data collected for additional 1 .
5x10° MD steps, every 1000 time steps. The simulations Pr=y > e, (11
studied 19 densities in the range 0.7@" <0.980 that cov- =t
ers the transition from the liquid phase to the solid phase. . ) ) )

The investigation of the time-dependent properties of thé/v_herec_s is a reqprocal lattice vector of the trlang_ular two-
system was performed separately after the thermodynam%‘mens'onal Iattlc_e. The corresponding global orientational
data collection stage. To allow for effects associated with th@"der parameter is defined by
very great difference in magnitude of the different dynamic N
relaxation times, at each density we carried out 3-5 simula- ® :i S vy, (12)
tions that extended for different lengths of time and used N~ 8
different time intervals for construction of the correlation
functions. The time intervals covered by the different simu-  The lateral mean square displacemAnf;y(t) was calcu-
lations overlapped in some regions. We checked the convefated using the following expression:
gence of the results by requiring that the values of the com-
puted dynamical properties in these overlapped time regions 1 N
are the same in the different simulations. <Ar§y(t)>zﬁ 2 [rxy(t)—rxy(O)]Z. (13

The equilibration and the two data collection stageys =1
namics and thermodynamjosere carried out without veloc-
ity rescaling(thus, in the microcanonical ensempie ensure

wherer,, is the lateral vector component of the particle’s
position, and the bond-orientation functi@y(ryy),

Gﬁ(rxy):<\[’g(0)q’6(rxy)>a 9

whereWg(r,,) is the local order parameter descriptive of the
hexagonal symmetry characteristic of close packing in two
é:iimensions; it is defined by

N

We describe the time-dependent deviation of the particle dis-

uninterrupted dynamical paths. Nevertheless, the r.m.s. d@lacement from Gaussian behavior by the non-Gaussian pa-

viation of the average temperature frdh=1.0000 was less 'aMetera,(t). In two dimensions it has the following repre-

than 5x 1074, sentation:
The lateral pressurB, was calculated from

t)= <[rxy(t)_rxy(0)]4> -1

ay(t)=
py - e T ), ®) T 2y () (013

(14

o In order to provide a measure for the deviation from Gauss-
where the angular brackets indicate an average value, thgn pehavior over all times we integrate the absolute value of

volumeV is V=AH and the lateral virial) is a,(t) over time in the following way:
N N (2, .2
1 Xij TYij au(r)
W= 2 T 0 I{laz[lnm]l}:f |azlIn(t)]|d In(t). (15)

1]

The structural properties of the system were characterized The normalized velocity-velocity autocorrelation function
by calculating the radial distribution functiay(r ) was calculated from
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<ny(0)‘ny(t)> Tr 1 1 rrrrrrrrrrrr T
Viy(0) Vi (0) (18) 120

wherev,, is the lateral vector component of the particle’s
velocity.

Time-dependent spatial correlations of the particles posi-
tions were examined using the van Hove functidi]. It is ®o 80
convenient to represent the “self” pa(r,,,t) and the
“distinct” part Ggy(ryy,t) of the van Hove function sepa-
rately. The self-part of the van Hove function, is the prob-
ability of finding a particle at time¢ and at distance,, given

Cpu(t)=

10.0

melting density

Poc'/e

t

6.0 freezing density -

0.40

x{ > _5(rxy—|rxy,i(0)—rxy,j(t)|)>. (18

i=1j#i 0.20

that att=0 it was at the origin. It is defined by 40t .
1 N I I0.7I60I I IO.BIOOI I I0.8I4OI I I0.8I80I I IO.S;20I I IO.QISOI I
- _ _ p*
Galay D= 5 24 Ay Iy (0= (D))
(17) L L L L L N B
=
The distinct-part of the van Hove function is the probability % 080 b -
of finding a particlej, j#i, at timet and at distance,, 8
given that at =0 particlei was at the origin. It is defined by £
2 o060} A-A translational OP -
1 S G-© orientational OP
Collay V= 50 N 5
©
8
5
[2]
5

Thus, G4(ryy,0)=pg(ryy). For all calculations of the time-
dependent properties of the system care was taken to assu
that the analysis did not cover times for which the displace-
ments of the particles exceeded half of the box length in the
x or y direction.

Al |

PR | I
0.880 0.920

0.00 0.960

0.840

p*

FIG. 2. (Color online (a) The lateral pressur@n reduced units
as a function of the two-dimensional number density. The low-
density end of the plateau regiongt=0.865 signifies the onset of
lll. RESULTS the liquid phase while the high-density endpdit=0.895 marks the

. . : onset of the solid phaséh) The global translational and orientation
theFItg\]lv(l;(-e dﬁ)egggrl]?;s;S;éaetrergler?;ﬁis?r:e tﬁ: ?;ﬁg;tlgggédi g)z;;aometers indicating that the hexatic phase is stable for 0.870
<p*=<0.980 for the colloid-colloid potential used in this ~ " -
study. The lateral-pressure-density isotherm exhibits a playery similar to those found in our earlier study using the MR
teau region(or a weak van der Waals lopjin the density and modified MR colloid-colloid interactiof45,48. They
range 0.865 p* <0.895 indicating a first-order phase tran- differ somewhat from those obtained experimentally by
sition. Figure 2b) displays the global translational and ori- Karnchanaphanurach, Lin, and Rice for a quasi-two-
entation order parameters as a function of density. For derdimensional suspension of silica spheres in water confined in
sities p*<0.860 the system is in the liquid phase, for a very thin glass cell49]. The colloid-colloid interaction in
densities 0.878 p*<0.890 it is in the hexatic phase, while that system is believed to be extremely short ranged, much
for densitiesp* =0.900 the system is in the solid phase. closer to a hard-sphere interaction than the interactions used
Despite the occurrence of a plateau in the isotherm coexisin this paper and our previous paper.
ing phases were not found in this region. We believe the As a measure of the magnitude of the deviation from
absence of coexisting phases in our simulation sample is @aussian form of the particle displacement distribution we
consequence of the finite size of the system, the small derplot in Fig. 4 the integral of the non-Gaussian parameter,
sity range over which the hexatic phase is stable, and theefined in Eq.(15), as a function of the two-dimensional
form of the colloid-colloid interaction. number density. Although the value of the integral is very

The radial distribution function and the bond-orientationsmall for the liquid phase, the particle motion is clearly het-
correlation function are plotted in Fig. 3 fgs*=0.860, erogeneous and correlated motion can be obsefseel be-
0.880, and 0.900. Both correlation functions have shortiow). However, ap* =0.870, there is a sharp increase in the
range order for the liquid phase and long-range order for thgalue of the integral indicating an increasing deviation from
solid phase, while the bond order correlation is long rangedhe Gaussian displacement distribution as the hexatic phase
and the pair correlation function is short ranged in theforms. The growing deviation from a Gaussian displacement
hexatic phase. The equilibrium properties of this system aréistribution extends into the solid phase. Due to the exponen-
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FIG. 3. The pair distribution functiog(ry,) (left pane) and the bond-orientation functidBe(ry,) (right pane] for p* =0.860, 0.880,
and 0.900 displaying the characteristic structural properties of the liquid, hexatic, and solid phases, respectively.

tial increase in magnitude of the relevant dynamical relax-a suitably expanded scale. The densities in Fig. 6 correspond
ation times, we are unable to provide meaningful results foto liquid far from the liquidus 6* =0.780), hexatic near the
p*=0.920. In Fig. 5 the value ofr,(t*) is plotted as a solidus (*=0.890), and solid far from the solidusp¥
function of the reduced time for 0.86(p*<0.920. The =0.960); their amplitudes are 1-2 orders of magnitude
value of a,(t*) exhibits a maximum whose magnitude in- smaller than those of the maxima at longer times displayed
creases as the density increases. The time for whijgh*) in Fig. 5. The time decays associated with these non-
is maximumty,,, increases exponentially with the density. Gaussian modes are short so that their effect on the value of
For p* < 0.850 the amplitude of this maximum is smaibt  the integral ofa,(t*) is negligible. In contrast to the behav-

showr). ior of the large amplitude maximum aok,(t*) at longer
In addition, for all densities at very short times-{* time, the value ofa,(t*) at the small amplitude maximum
=0.1-0.4), we find another maximum im,(t*) versust*. and the time at which this maximum is observed decrease

These small amplitude maxima are displayed in Fig. 6 usingvith the density.
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"
FIG. 4. The integral of the absolute value of the non-Gaussian g|G. 6. (Color onling Magnification of a,(t*) at very short
parametefa;[ In(t*)]| over the natural logarithm of time, defined in {imes 5x 10 3<t* <5x 1P, for two-dimensional number densi-
Eq. (15), as a function of the two-dimensional number density.  ties that represent liquid far from freezing*(=0.780), hexatic
near the melting point 4* =0.890), and solid far from melting
In Fig. 7 the normalized velocity autocorrelation function (p* =0.960). The small-amplitude maximum af(t*), observed
is displayed. The time for which the function exhibits a mini- at very short times € t* =0.1-0.4), occurs for all densities. Note
mum with a negative valuéor a decay to zepocorresponds that in contrast to the behavior of the large-amplitude maximum of
to the first collision; in a dense medium the first collision of a,(t*) at longer time shown in Fig. 5, the value af(t*) at the
an atom with its neighbors generates backscattering. The bgxaximum and the time at the maximum decrease with the density.
havior shown in this figure is more pronounced at higher
densities due to the cage effect, since the backscattering {gde of the maximum to lower values as the density is in-
more nearly parallel to the initial direction the higher the creased is to be expected. At higher densities the collision
density, thereby generating a deeper minimum of the velocitjime is shorter, which means that stochastic behavior is ap-
autocorrelation function. The time at the minimum or at theProached at shorter time and for smaller particle displace-
decay to Zerc(when such a minimum is absent at low den- ments, yleldlng smaller deviations of the particle displace-
sities, corresponds to the time at which the small amplitudement distribution from Gaussian form.
maximum ofa,(t*), shown in Fig. 6, occurs. We infer that ~ The time for which the large amplitude maximum of
the deviation from Gaussian behavior at very short tiow- ~ @2(t*) is observed(Fig. 5 encompasses many collision
lision time) originates from the deviation from ballistic mo- €events. For example, the maximum fef = 0.890 occurs at
tion due to the first collision event. The shift of the location aroundt’.=35. Given the information in Fig. 7 this corre-
of the maximum to shorter times and the shift of the ampli-

5.0 [T

oo p* = 0.920
a—a p* =0.910
+—s p* = 0.900
o—e p* =0.890

\380

[ 0—o pi =
S L o—a p* X 0.8
: o

2.0F

ay(t)

-0'%.0 0.1 0.2 0.3 04 05 0.6 07 08 0.9 1.0
t*

0.0%

102 10

t* FIG. 7. (Color online The normalized velocity autocorrelation
function as a function of the reduced time for the three densities

FIG. 5. (Color online The non-Gaussian parametes(t*) asa  shown in Fig. 6. The velocities are calculated only for the lateral

function of the reduced timg* for two-dimensional number densi- components in th&y plane. The time for which the function exhib-

ties 0.866<p* <0.920. Thex axis is plotted on a logarithmic scale. its a minimum(or a decay to zepais the time it takes the particles

The value ofa,(t*) at the maximum as well as the time which the to travel between collisions and it corresponds to the time for which

maximum appears increase for higher densities. The latter appeatise small-amplitude maximum a#,(t*) shown in Fig. 6 is ob-

to depend exponentially on the density. served.
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FIG. 8. (Color onling The lateral mean squared displacement  FIG. 9. (Color onling The lateral mean squared displacement
(in reduced unitsas a function of the reduced time for the three (in reduced units as a function of the reduced time for two-
densities shown in Figs. 6 and 7. Both axes are plotted on a logatimensional number densities 0.86p* <0.920. The curves show
rithmic scale. Forp* =0.890 the plot exhibits three different dy- the emergence of the three dynamic relaxation modes. The slope of
namic relaxations modes. The onset of the relaxation mode at lonthe mean squared displacement for the longest relaxation mode is
time corresponds to the location of the maximumag{t*)(~t* linear for all densities indicating diffusive behavior. However, the
=35) shown in Fig. 5. slope for the intermediate relaxation mode is sublinear for densities

lower, and vanishes for densities higher, than the melting density.
sponds to 180 collision times. Fp* =0.910 the maximum  The time of the onset of the longest relaxation mode increases ex-
of a,(t*) is observed at},,=3000. This corresponds to ponentially with the density and it corresponds to the time for
1.7x 10* collision times. It appears thaf,, increases expo- Which a(t*) is maximum.
nentially with the density. ) _ _ ) )

In Fig. 8 we display the lateral mean squared single parponentlally with the density and it corresponds to the time
ticle displacement as a function of the reduced time for thdor which a(t*) is maximum. The slope at intermediate
two-dimensional number densities shown in Figs. 6 and 7times observed fop* =0.870-0.890 is greater than zero but
For t* shorter than the particle collision tim¢*(<0.1) the ~ smaller than one, which is a consequence of dynamical het-
plots for all densities overlap as expected for density inde€rogeneity(Fig. 10; there are two-dimensional “ordered”
pendent ballistic motion. At long times, the particle motion
for the liquid far from freezing 4* = 0.780) is diffusive, i.e.,
the mean squared displacement is a linear function of time.
For the solid far from the solidus{ =0.960) the dynamics
at times as long as they were reached during the current
simulations can be described as vibrations around lattice
points; then the mean squared displacement is a constant. For
the hexatic phase near the solidy3 & 0.890), three distinct
regions of the mean squared displacements can be identified.
At times longer than the collision time but shorter than the
long time behaviof“intermediate time”), the dependence of
the mean squared displacement on time is sublinear. At long
time, the motion is diffusive, as is indicated by the linear
slope, the same as that observed for the liquid far from freez-
ing (p* =0.780). Note that fop* =0.890 the onset of the
long-time dynamical relaxation mode is the sametgs,
identified in Fig. 5.

Figure 9 displays the mean squared displacement for the
density range 0'8,7@1)* $0.9?0, showing the emergence O_f FIG. 10. (Color onling A section of the simulation bodength
the thrge d_ynamlcal relaxation processes. The intermediatg pox vector is 3¢ in each directionfor p* =0.880 showing the
relaxation time appears fgi*>0.870 and is broadened as particle trajectories. The total number of frames is 41 separated by
the density increases. This region, with a sublinear slope fofime interval At*=2.5, so that the duration of each trajectory is
densities between the liquidus and the solidus, attains a zeg® = 100. At this densityt},,=16 and(ArZ,(t* = 100))=3.78. The
slope when the system becomes completely sofid ( heterogeneity of the particle motion is evident, as are the vibrational
=0.900). The results indicate that the slowing down in themodes and correlated diffusion along the directions with strong
particle motion at intermediate times originates from thebond orientation correlation. The region indicated by the square is
cage effect. The onset of long-time dynamics increases eplotted in Fig. 11.
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FIG. 11. (Colorn The same trajectory displayed in Fig. 10, %' 7
shown on a smaller scaltength of box vector is & in each direc- —_— _
tion) angl for an qrdered domain. Trajectories of different particles - oo = 5400
are depicted in different colors. 3,010 +—+ Gaussian approximation -
. . . (\D,m 0.08 —
domains(contributing zero to the slope of the mean squared, *
displacement and one-dimensional “disordered” domains « 00 7
(occurring at the boundaries of the “ordered” domainbhe - i
resulting displacement dynamics, therefore, has a mixec Ld .
character. The coexistence between the dynamically ordere 002 "%\ .
. . . . . *
and disordered domains occurs for densities inside the pla F ., . T IPTIPEEEE
teau region of the lateral pressure-density isotherm ever ~"0 2 4 6 8 10 12 14 16 18 20 22 24
. . . . r
though our simulation results do not display clear coexist- xy

ence between liquid and hexatic and hexatic and solid

pha}ses. '!'he mot_lon of the Pa”'c'es in th? “dlsor-dered.” do'multiplied by the radial element2r,,, as a function of the re-

main duringty,, is cooperative and quasi-one-dimensionalyceq |ateral interparticle distance, plotted fof=0.890 at(a)

(stringlike), yielding the observed deviation from Gaussianghert time ¢*=0.1) and(b) long time ¢* =5400). The function

form of the displacement distribution. describing the single particle distribution derived from the Gaussian
Figure 10 shows the trajectory of the particles for a secapproximation[Eq. (1)] is also plotted. The values of the mean

tion of the simulation box fop* =0.880. The time covered squared disp|acemen(m§y(t* =0.1))=0.0118 and <Ar§y(t*

is in the range &t* <100, which is about &,,,. For this  =5400))=40.14, were taken from Fig. 8.

density and for this time interval the mean squared displace- vzed usi h f . . 5

ment(Arf(y(t* =100))=3.78. Thus, the trajectories of most were analyzed using the van Hove functions. In Fig. 12 we

of the particles in this figure represent diffusion for a dis-EIOt the self-part*o_f the van Have ffrlCtion at shott' (
tance of about 2 particle diameters. The cooperative motion’ 0.1) and Ior?g (" =5400) 2t|mes for,z) _9'890' We al_so
of the particles can be seen clearly in Fig. 11 where thélot the function[2r,,/(Arf (t))]e” /(). which is
attention is focused on an ordered domain and different paithe expression foG(ry,t) obtained from the Gaussian ap-
ticle trajectories are depicted in different colors. It is clearproximation [Eq. (1)] multiplied by the radial element
the system is dynamically heterogeneous and that the diff27r,y. The values ok ArZ(t)) were taken from indepen-
sive paths of the particles are along the directions with stronglent simulations results shown in Fig. 8, namémﬁy(t*

bond orientation correlation. =0.1))=0.0118 and (Ariy(t* =5400))=40.14. Hence,

It is computationally very demanding to approach thethere are no fitted parameters for the Gaussian form. The
long time scale fop*=0.920, therefore we are unable get figures show that for the short and long time regimes the
meaningful dynamical results for this region of the solid Gaussian approximation is almost identical to the simulation
phase. Our analysis at short and intermediate time scaleesults. Note thaG(ry ,t) is multiplied by 2rr,, to cancel
reveals very small values of the integralaf(t*) (plotted in  the radial averaging that is introduced in Ea7). This is
Fig. 4 and mean squared displacements independent of theecessary because the single-particle displacement distribu-
time, the same as plotted in Fig. 8 fof =0.960. Thus, for tion at intermediate times is not radially homogeneous; it is
short and intermediate times the particle displacement distriessentially that resulting from motion in one dimension. Fig-
bution of this system has a Gaussian form. ure 13 displays the distinct part of the van Hove function for

The time-dependent distributions of the particles motionthe short and long times analyzed in Fig. 12. At short time,

FIG. 12. (Color onling The self-part of the van Hove function,
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FIG. 13. (Color online The distinct-part of the van Hove func- FIG. 15. (Color online The distinct-part of the van Hove func-
tion, normalized by the reduced two-dimensional number densitytion, normalized by the reduced two-dimensional number density,
as a function of the reduced lateral interparticle distance, plotted foas a function of the reduced lateral interparticle distance, plotted for
p*=0.890 at the short and the long times analyzed in Fig. 12. The* =0.890 at the times analyzed in Fig. 14. For the times shown,
short time behavior 0G4(ry, ,t) exhibits structure that is similar to  the increase oGy(ryy,t)/p* atr,,=0.0 with time, and the mini-
the static pair distribution functiog(r). On the other hand, the mum ofGq(ry,,t)/p* atr,,=0.5, points to the discontinuity of the
long time behavior of54(ry, ,t) is constant. particle motion.

Gy(ryy,t) is very similar tog(ryy). At long time,G4(ryy ,t) indicating that the dynamics is heterogenous and that the
is sensibly independent of,, as expected from stochastic particles experience cooperative “jumps” from one site to
particle dynamics. another. Thus, at specific values of time there are different

In contrast to the behavior at short and long times, thesubsets of particles that travel for different distances. The
particle dynamics at the transition from intermediate time tofact that these maxima are separated by a distance that cor-
long time is very different. As shown above, there is a cor-responds the particle diameter indicates that the jump dy-
relation between the location 6f,,, and the time for which namics, over 2—3 particle diameters, is in one dimension.
the diffusive behavior begins. Figure 14 exhibits the self-parfigure 15 displays the distinct part of the van Hove function
of the van Hove function for four times arourtd,, (for ~ for the same times as in Fig. 14. It is evident thattas
p*=0.890, t¥,~35). The curves exhibit multiple maxima Increases from 25 to 250 the probability of finding a particle

at the location where another particle resided*at0 in-
creases dramatically. The minimum of the probability distri-
bution atr},=0.5 confirms the picture of “jumps” rather
than continuous diffusion.

Correlated jump dynamics also occurs in the solid phase.
Figure 16 displays the self-part of the van Hove function for
p*=0.910 at times in the range 258@* <140000. The
curves are similar to those shown in Fig. 14. However, the
number of maxima is larger and they are better resolved,
which indicates greater heterogeneity and stronger dynami-
cal correlations. The amplitude of the first peak decreases
with time so that fort*=98000, the second peak of
Gy(ryy,t) has a larger amplitude than the first peak, which
indicates that the majority of the particles have already dif-
fused at least one lattice site. Figure 17 displays the corre-
sponding distinct part of the van Hove function; it shows a
large increase at,,=0.0 as the time increases while for

FIG. 14. (Color onling The self-part of the van Hove function, larger _values Of_xy |t_|s hardly Changed._ .
multiplied by the radial element#r,,, as a function of the re- __AS IS shown in Fig. 9, at very long time the colloid par-
duced lateral interparticle distance, plotted for=0.890 at four ~ ticle motion for all densities, even for densities in the solid
values of time aroundf®,~35. The multiple maxima observed, as Phase, is diffusive. Cooperative jumps that lead to a diffusive
the time increases, separated by a distance corresponding to tREOCESS in crystals can be explained by a mechanism that
particle diameter indicate dynamical heterogeneity and that the mdnvolves many such correlated hops in random locations and
tion of the particles are described by correlated “jumps” to a neigh-random directiongalong the crystallographic axegielding
boring site and not via continuous diffusion. random walk behavior.
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FIG. 16. (Color online Same as Fig. 14 but for a density that  FIG. 17. (Color online Same as Fig. 15 but for a density that
corresponds to the solid phag€=0.910. Note that the amplitude corresponds to the solid phage =0.910. Gy(ryy,t) exhibits a
of the first peak decreases while the number of peaks increase withrge increase at,,=0.0 as the time increases while for larger
time. G4(r,, ,t) att* =140 000 exhibits five maxima. values ofr,, it does not change.

The amplitude ofa,(t*) is small in the liquid phase and V. DISCUSSION

a third (intermediatg dynamical relaxation process is not ob-  The results presented in this paper reveal a strong corre-
served. However, the particle trajectories are heterogenoustion between the dynamical and the thermodynamic behav-
and the corresponding displacement distribution is nonior of a quasi-two-dimensional system. Although dynamical
Gaussian. This can be seen in Fig. 18 where we display theeterogeneity and correlated motion are present in the liquid
particle trajectories for a density in the liquid phas®  phase, at the liquidus the distribution of single-particle dis-
=0.820 for a time period of* =6. At this density,t},,  placements develops a strong deviation from Gaussian form
=1.2 and(Ariy(t*=6)):1.41. The cooperativity of the and the mean squared displacement as a function of time
particle motion is evident in linear stringlike paths and inexhibits a third relaxation region at intermediate times that is
circular paths with an immobile particle in the center. characterized by a sublinear slope. The onset of this behavior
The results of this study and of computational and experiis associated with the transition from the liquid to a hexatic
mental studies of other systems imply that the deviation ophase with long-ranged bond orientation order. At the solidus
the distribution of particle displacements from Gaussiarthis sublinear slope becomes zero for intermediate time.
form is universal. Although our results are for a system with  The deviation of the single-particle displacement distribu-
a colloid-colloid potential that is everywhere repulsive, verytion from Gaussian form is a result of correlated motion that
similar results have been obtained for systems with thénas also been observed in real quasi-two-dimensional colloid
Marcus-Rice and modified Marcus-Rice potentials that weresuspensions. The results that are presented here show that the
designed to represent colloidal particles that are stericallgorrelated motion becomes relatively more important in the
stabilized with grafted polymer15,48. It is worth noting  solid phase. The continuous behavior of this mode of motion
that the change in the colloid-colloid interaction does cause &rom the liquid phase through the hexatic phase and into the
marked change in the thermodynamic behavior of the systerorystalline phase suggests that it arises from the same physi-
in the high-density region of the phase diagrgsa]. cal phenomenon. It is logical to assign the driver for motion
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perposition of instantaneous normal mode excitations with a
free energy greater than the free energy barrier for hopping.
As the density increases, the life times of the instantaneous
normal vibrations increase, thereby allowing more effective
competition between cooperative hopping motion and inde-
pendent particle motion, so that the cooperative hopping be-
comes increasingly dominant as the density increases. The
natural hopping directions are along axes with strong bond
orientation correlation.

From a free energy landscape point of view, the slowing
down in the dynamics at intermediate times can be inter-
preted in terms of trapping in local minima. Then the transi-
tions from one local minimum to another define the displace-
ment dynamics of the system. This picture was first
introduced by Goldstein with respect to the glass transition

SR AT IS ARt T [57]. In a recent development with the same conceptual ba-
R EOTERNY M IR sis, Halpern extended the random energy model for three-
dimensional supercooled liquids to include two routes for the

FIG. 18. A section of the simulation baength of box vectoris  hapticles to leave their traps by thermal excitation. The cor-

400 in each directiondisplaying the particle trajectories for a den-
sity in the liquid phase* =0.820. The total number of frames is 41
separated by time intervadlt* =0.15, so that the duration of each
trajectory ist* =6. At this densityty.,=1.2 and(Ar (t* =1.2))
=0.249. The cooperativity of the particle motion is present as lin-
ear and circular strings of motion.

related motion of a group of particles was assigned a lower
activation energy and a smaller prefactarsmaller matrix
element for the transitigrthan independent particle motion,
so that at low temperature it dominates the diffusion mecha-
nism [58].

There is a striking similarity between the distribution of

in the solid phase to superpositions of normal mode vibraSingle-particle displacements in a quasi-two-dimensional lig-
Jid near the liquidus with that obtained near the glass tran-

tions along paths that generate activated hopping of a paH!® ) e _
dysition for glass forming liquids. However, there is also a

ticle. Normal mode analysis of the motion of a many-body ;
system is rigorously possible in crystals for which the restor_mndamental difference between these results. The glass tran-

ing forces acting on a particle are linear in the displacementition is a kinetic effect in the sense that it does not corre-
of the particle from its equilibrium positiof61]. Neverthe- SPond to the global minimum of the free energy of the sys-
less, Zwanzig has argued that collective variables, analogod§™M: nence the particle motion near the glass transition will
to longitudinal and transverse phonons in crystals, do exist ifeNd o drive the system towards a more stable state. On the
classical liquidg52]. He noted, however, that their lifetimes Other hand, the correlated motion in a quasi-two-dimensional
are exceedingly short except in the glassy state. This idea higuid is present in the field of equilibrium states of the sys-
been followed up by Stratt and co-workef§3,54 and tem and bo_th the structural an_d thermal properties of the
Keyes and co-workerE55,56 via the definition of instanta- SYStém are independent of the time.
neous normal modes of a liquid.
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