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Freezing transition and correlated motion in a quasi-two-dimensional colloid suspension
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Recent experiments have demonstrated that the deviation of the single-particle displacement distribution
from Gaussian form in a dense quasi-two-dimensional colloid suspension is a result of heterogenous dynamics
that involves cooperative motions of neighboring colloid particles@J. Chem. Phys.47, 9142 ~2001!#. In this
paper, we report the results of molecular dynamics~MD! simulations of a quasi-two-dimensional assembly of
nearly hard-sphere colloid particles. The colloid-colloid interaction we use is short ranged and everywhere
repulsive; it is related to the Marcus-Rice~MR! and modified MR interactions used in a previous study@Phys.
Rev. E58, 7529~1998!#. As is the case for those systems, the one we study supports liquid, hexatic, and solid
phases. Our calculations show that the deviation of the single-particle displacement distribution from Gaussian
form is present in the liquid phase, and that a sharp increase in its magnitude occurs at the liquidus density and
extends into the crystalline phase. For densities greater than the liquidus density we find three dynamical
relaxation processes that include, at intermediate times, a slowing down in the rate of growth of the diffusive
displacement of a particle due to the cage effect. As the density increases toward the solidus density, the
dependence of the mean squared displacement on time, at intermediate times, changes from sublinear to zero.
The onset of the long-time relaxation mode corresponds to the time at which the deviation of the particle
displacement distribution from Gaussian form is a maximum. At this time, which increases exponentially with
the density, the self-part of the van Hove function exhibits multiple maxima with respect tor while the distinct
part of the van Hove function is a maximum at the origin, thereby signaling jump dynamics. At long times the
particle mean square displacement has diffusive character at all densities including solid phase densities. A
remarkable feature of our findings is the continuity of character of the particle displacement from the liquid
phase through the hexatic phase and into the solid phase. Cooperative jumps that lead to diffusive process in
crystals can be explained by a mechanism that involves many such correlated hops in random locations and
random directions~but along the crystallographic axes! thereby generating effective random walk behavior. We
argue that the collective motion we have found is generated by superpositions of instantaneous normal mode
vibrations along diffusive paths. The diffusive paths are along the directions with strong bond orientation
correlation, and start to grow in amplitude rapidly on entry into the hexatic phase.

DOI: 10.1103/PhysRevE.68.061508 PACS number~s!: 64.70.Dv, 82.70.Dd
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I. INTRODUCTION

The character of one-particle motion in a medium can
used to monitor the contributions of cooperative effects
the particle displacement dynamics. In an ideal gas the
placement of a particle is independent of the displacem
of the other particles. Then the probability that a particle w
move a distancer in time t, Gs(r ,t), is proportional to the
probability of its having a velocity with the magnituder /t as
given by the Maxwell-Boltzmann distribution. The probab
ity distribution Gs(r ,t) known as the self-part of the va
Hove function is, therefore, proportional toe2mr2/2kBTt2.
This free-particle behavior is applicable to all media at
densities in the limitt→0. In the hydrodynamic limit,t
→`, when cooperative effects dominate the particle d
placement in a dense liquid, the solution of the diffusi
equation also yields a Gaussian form forGs(r ,t) @1#. In both
limits, Gs(r ,t) in two dimensions can be written as

Gs~r ,t !5
a~ t !

p
e2a(t)r 2

, ~1!
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wherea(t) is obtained by expressing the mean squared
placement^r 2(t)& as a spatial integral ofGs(r ,t). Then
a(t)51/̂ r 2(t)&. If Gs(r ,t) has a Gaussian form the ave
ages of the even-power moments of the single particle
placement distribution satisfy the following relation:

^r 2n~ t !&5n! ^r 2~ t !&n. ~2!

Therefore, deviations from the Gaussian approximation
be measured by a time-dependent terman(t)

an~ t !5
^r 2n(t)&

n! ^r 2~ t !&n
21. ~3!

Deviations from the Gaussian distribution of particle d
placements that occur in the intermediate time regime
three-dimensional systems are very small@2–4#. In these
cases the first correction to the Gaussian approximatio
typically 10% or less of the leading term and success
terms are even smaller. Stronger deviations from Gaus
behavior has been observed in dense glass-forming liq
just above the glass transition@5–8#.
©2003 The American Physical Society08-1
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R. ZANGI AND S. A. RICE PHYSICAL REVIEW E68, 061508 ~2003!
Recently, it has been shown, both computationally@9–12#
and experimentally@13,14#, that the motion of dense two
dimensional liquids is heterogenous and the single-part
displacement distribution has a very large non-Gauss
component. Moreover, it is found that in these dense liqu
the single-particle displacement involves cooperative stri
like motions in some time regimes.

Consider the case of a simple fluid. For times shorter t
the average collision time the particle motion is ballist
hence the mean squared displacement is a quadratic fun
of time. At long times, the stochastic nature of success
interactions with the neighboring particles generates dyn
ics that can be represented by a Brownian motion mode
this regime the mean squared displacement of a particle
linear function of time. In three dimensions the interpolati
between these two time regimes extends over a short
period and the deviations from Gaussian behavior are v
small; these deviations can be accounted for by mem
function analysis of the autocorrelation function of the ra
dom force. However, in a high density two-dimensional l
uid the asymptotic diffusive behavior is reached very slow
The large magnitude deviations from Gaussian behavio
the intermediate-time regime suggest that the mechanism
the one-particle motion of the particles is different; the la
of vacancies in the first-neighbor shell surrounding a m
ecule~‘‘cage effect’’! inhibits large displacements and loc
rearrangements can only occur through the correlated mo
of many particles along pathways that preserve the local c
tinuity of the system. Such local rearrangements typica
occur in domains which are temporarily more ‘‘fluidized
than the background.

The notion of correlated motion in so-called ‘‘cooper
tively rearranging regions’’ was first introduced by Adam a
Gibbs for the case of dense glass-forming liquids@15#. The
typical size of these cooperatively rearranging regions is p
tulated to grow with decreasing temperature.

Marcus, Schofield, and Rice@13# reported the results o
experimental studies that show the presence of stringlike
operative motions in a dense quasi-two-dimensional liqu
They observed that the self-part of the van Hove funct
developed a second peak due to an activated proces
which a particle hops to one of the positions that was f
merly occupied by one of the cage particles that initia
surrounded it.

Further studies by Cui, Lin, and Rice@14# found that the
one-particle displacement dynamics can be described
terms of three relaxation processes; the contributions of th
processes to the particle mean squared displacement
with time so that one or the other is dominant in differe
time domains. In particular, they found that at intermedi
times the mean squared displacement has a sublinear de
dence on time, while, at long times there is an increase in
mean squared displacement due to contributions from in
quent large displacements, of the order of a particle diam
in length. The spatial configurations of the particles consis
of dynamically ordered domains separated by fluidiz
boundaries. The displacement of a particle in the fluidiz
boundary region was correlated with the displacement o
neighbors. As a consequence, the time dependence o
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particle displacement at intermediate times had mixed ch
acter due to contributions from several different kinds
motions.

In three-dimensional systems, deviations of the me
squared displacement of a particle from Gaussian beha
have been reported from the results of experiments p
formed on bulk colloidal suspensions@7,8# and on super-
cooled orthoterphenyl@16#. Such deviations have also bee
reported from the results of simulations of the hard-sph
liquid @17#, Lennard-Jones binary mixtures@5,6,18,19#, and
polymer melts@20–22#. In all of the cases cited the finding
are interpreted in terms of the transition to the glass st
However, in the quasi-two-dimensional systems mention
above, the dense colloidal suspensions do not exhibit a g
transition; rather, they freeze to form a hexagonal crystall
phase.

Mode-coupling theory predicts that three-dimension
dense liquids near the glass transition exhibit a distinct se
ration of relaxation time scales, specifically a slow glob
relaxation identified as thea-relaxation process and an inte
mediate rate relaxation identified as theb-relaxation process
@23–25#. A theoretical analysis that incorporates the effe
of both mode coupling and binary uncorrelated collisions
the memory function has been used to describe the dyna
of quasi-two-dimensional confined colloid suspensions@26#.

Diffusion in a crystal is normally accounted for by th
motion of defects. For systems of the type we consider
most important defect is a lattice vacancy. Almost all exta
theories of diffusion in a crystal use the assumption that a
jumps into vacancies are independent of one another, he
generate a random walk@27#. In general, if the defects ar
randomly distributed then the assumption that the motion
the migrating particles are independent leads to a Gaus
distribution of one-particle displacements at long time. R
and co-workers showed that the one-particle diffusion co
ficient can be represented in terms of a superposition of
normal vibrations of the crystal that have nonvanishing p
jections on the path between an occupied site and a ne
boring vacant site@28–32#. Two-dimensional solids are
qualitatively different from three-dimensional solids. In th
former case, translational correlations are destroyed ar
→` by long wavelength thermal fluctuations@33–36#. The
unusual character of the melting transition in tw
dimensional solids is described by the well know
Kosterlitz–Thouless–Halperin–Nelson–Young~KTHNY !
theory @37–41#. This theory predicts that the two
dimensional solid melts via a two stage process: first a c
tinuous transition to a hexatic state, followed by a continuo
transition to the liquid state. Zippelius has argued further t
due to the nonlinearity of the hydrodynamic equations in t
dimensions, the damping rates of phonon excitations in tw
dimensional solids diverge logarithmically@42#. Taken to-
gether, all of these peculiarities of two-dimensional sol
suggest that the diffusion mechanism might also differ fro
its three-dimensional counterpart.

In this paper, we present the results of extensive simu
tions of a quasi-two-dimensional colloid assembly. Our c
culations show that the deviation of the single-particle d
placement distribution from Gaussian form is present in
8-2
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FREEZING TRANSITION AND CORRELATED MOTION . . . PHYSICAL REVIEW E68, 061508 ~2003!
liquid phase, and that a sharp increase in its magnitude
curs at the liquidus density and extends into the crystal
phase. For densities greater than the liquidus density we
three dynamical relaxation processes that include, at inter
diate times, a slowing down in the rate of growth of t
diffusive displacement of a particle due to the cage effect.
the density increases toward the solidus density, the de
dence of the mean squared displacement on time, at inte
diate times, changes from sublinear to zero. The onset o
long-time relaxation mode corresponds to the time at wh
the deviation of the particle displacement distribution fro
Gaussian form is a maximum. At this time, which increas
exponentially with the density, the self-part of the van Ho
function exhibits multiple maxima with respect tor while the
distinct part of the van Hove function is a maximum at t
origin, thereby signaling jump dynamics. At long times t
particle mean square displacement has diffusive charact
all densities including solid phase densities. A remarka
feature of our findings is the continuity of character of t
particle displacement from the liquid phase through
hexatic phase and into the solid phase. Cooperative ju
that lead to diffusive process in crystals can be explained
a mechanism that involves many such correlated hop
random locations and random directions~but along the crys-
tallographic axes! thereby generating effective random wa
behavior. We argue that the collective motion we have fou
is generated by superpositions of instantaneous normal m
vibrations along diffusive paths. The diffusive paths a
along the directions with strong bond orientation correlati
and start to grow in amplitude rapidly on entry into th
hexatic phase.

II. METHODS

The model systems that we study consist of a single la
with N52016 particles, placed in a quasi-two-dimension
simulation box. The simulation box is rectangular in thexy
plane, with side lengths in the ratiox/y57/(8A3/2); it has a
height slightly greater than the particle diameter~see below!.
Periodic boundary conditions were imposed in thex and y
directions, but not in thez direction. The calculations wer
carried out, and the results are reported below, in terms of
reduced variablesr * 5r /s, z* 5z/s, T* 5kBT/«, r*
5rs2, t* 5t(kBT/ms2)1/2, m51, with s the diameter of
the particle,r the number density,m the mass of the particle
t the time and 3.689« is the value of the interparticle poten
tial at r * 51.000. Although the particles can move in thez
direction under the influence of az-dependent one-body po
tential, we choose to characterize the state of the system
the two-dimensional number densityr5N/A, whereA is the
area of the simulation cell in thexy plane, since the height o
the cell H is constant in all of the simulations presented
this paper. The same number of particles was present in
simulation cell for all of the densities studied. To study t
properties of the system with different particle densities
changed the area of the simulation cell in thexy plane.

The interparticle potential was represented by
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with A52310219 and a564. The functional form in Eq.
~4! is very nearly a hard-core repulsion but has continuo
derivatives. It is plotted in Fig. 1~a!. We note that the poten
tial represented in Eq.~4! differs from the potential we used
previously to study the equilibrium properties of a qua
two-dimensional colloid system by omission of two terms
that potential; a narrow attractive well centered atr * 51.05
and an interpolating soft repulsion.

The confinement of the particles in the6z directions is
affected by the action of a one-bodyz-dependent externa
field. Different forms can be chosen for this field, the sim
plest being that for hard parallel walls. Then the extra deg
of freedom that is introduced in the thermodynamic desc
tion of the system is the spacing between those two wa
Because of their macroscopic size, colloidal spheres do
‘‘feel’’ the atomic scale granularity of the walls, so the wal
can be regarded as smooth. The shape of the potential
was chosen,

FIG. 1. ~a! The interparticle potential between colloid particle
used in this study.~b! The external potential confining the particle
to a slab with height ofH51.20s. The external potential is plotted
as a function of the reduced center of mass coordinate along
vertical axis (z axis! measured from the center of the cell.
8-3
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R. ZANGI AND S. A. RICE PHYSICAL REVIEW E68, 061508 ~2003!
uext~z* !5D«~z* !z, ~5!

is such as to confine the system to form a slab with w
specified heightH. In Eq. ~5! z* is the distance from the
center of the cell to the center of mass of the particle anz
524, D5231024; this potential confines the particles as
they were in a cell with an effective height ofH51.20s ~i.e.,
z* 560.10) and is shown in Fig. 1~b!.

The MD simulations were carried out in the microcano
cal ensemble using the ‘‘velocity Verlet’’ algorithm@43,44#.
The distance at which the potential was cut off was 1.5s and
the time step used was, in reduced units, 531024; the asso-
ciated r.m.s. fluctuation in total energy did not exceed o
part in 105.

The initial configurations for the simulations were tak
from previous simulations that studied the thermodynam
behavior of a similar system with the Marcus-Rice interp
ticle potential@45#. At each density the required temperatu
was created in a preequilibration stage by multiplying
velocities, every 13105 MD steps, by an appropriate con
stant. This stage was repeated until the difference betw
the average temperature of the system and the presc
temperatureT* 51.0000, did not exceed 531024 in reduced
units. Then the system was further equilibrated for 73106

MD steps, and thermodynamics data collected for additio
53106 MD steps, every 1000 time steps. The simulatio
studied 19 densities in the range 0.740<r* <0.980 that cov-
ers the transition from the liquid phase to the solid phase

The investigation of the time-dependent properties of
system was performed separately after the thermodyna
data collection stage. To allow for effects associated with
very great difference in magnitude of the different dynam
relaxation times, at each density we carried out 3–5 sim
tions that extended for different lengths of time and us
different time intervals for construction of the correlatio
functions. The time intervals covered by the different sim
lations overlapped in some regions. We checked the con
gence of the results by requiring that the values of the co
puted dynamical properties in these overlapped time reg
are the same in the different simulations.

The equilibration and the two data collection stages~dy-
namics and thermodynamics! were carried out without veloc
ity rescaling~thus, in the microcanonical ensemble! to ensure
uninterrupted dynamical paths. Nevertheless, the r.m.s.
viation of the average temperature fromT* 51.0000 was less
than 531024.

The lateral pressurePl was calculated from

Pl5
NkBT1^Wl&

V
, ~6!

where the angular brackets indicate an average value,
volumeV is V5AH and the lateral virialWl is

Wl52
1

2 (
i 51

N

(
j . i

N xi j
2 1yi j

2

r i j

]u~r !

]r U
r 5r i j

. ~7!

The structural properties of the system were character
by calculating the radial distribution functiong(r xy)
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A

2pr xyN~N21! K (
i 51

N

(
j Þ i

N

d~r xy2ur xy,i
2r xy, j

u)L ,

~8!

where r xy is the lateral vector component of the particle
position, and the bond-orientation functionG6(r xy),

G6~r xy!5^C6* ~0!C6~r xy!&, ~9!

whereC6(r xy) is the local order parameter descriptive of t
hexagonal symmetry characteristic of close packing in t
dimensions; it is defined by

C6i5
1

ni
(
j 51

ni

ei6u i j . ~10!

The sum in Eq.~10! is taken over theni nearest neighbors to
particlei, as determined by a two-dimensional Voronoi pol
gon construction@46#. We denote byu i j the angle between
the vectorr xy,i j

and an arbitrary fixed axis. The global tran
lational order parameter is defined to be the sum of the F
rier components of the density

FT5
1

N (
i 51

N

eiGW •rW i, ~11!

whereGW is a reciprocal lattice vector of the triangular two
dimensional lattice. The corresponding global orientatio
order parameter is defined by

F65
1

N (
i 51

N

C6i . ~12!

The lateral mean square displacementDr xy
2 (t) was calcu-

lated using the following expression:

^Dr xy
2 ~ t !&5

1

N (
i 51

N

@r xy~ t !2r xy~0!#2. ~13!

We describe the time-dependent deviation of the particle
placement from Gaussian behavior by the non-Gaussian
rametera2(t). In two dimensions it has the following repre
sentation:

a2~ t !5
^@r xy~ t !2r xy~0!#4&

2^@r xy~ t !2r xy~0!#2&2
21. ~14!

In order to provide a measure for the deviation from Gau
ian behavior over all times we integrate the absolute value
a2(t) over time in the following way:

I $ua2@ ln~ t !#u%5E ua2@ ln~ t !#ud ln~ t !. ~15!

The normalized velocity-velocity autocorrelation functio
was calculated from
8-4
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FREEZING TRANSITION AND CORRELATED MOTION . . . PHYSICAL REVIEW E68, 061508 ~2003!
Cvv~ t !5
^vxy~0!•vxy~ t !&
vxy~0!•vxy~0!

, ~16!

where vxy is the lateral vector component of the particle
velocity.

Time-dependent spatial correlations of the particles p
tions were examined using the van Hove function@47#. It is
convenient to represent the ‘‘self’’ partGs(r xy ,t) and the
‘‘distinct’’ part Gd(r xy ,t) of the van Hove function sepa
rately. The self-part of the van Hove function, is the pro
ability of finding a particle at timet and at distancer xy given
that att50 it was at the origin. It is defined by

Gs~r xy ,t !5
1

2pr xyN
K (

i 51

N

d~r xy2ur xy,i
~0!2r xy,i

~ t !u!L .

~17!

The distinct-part of the van Hove function is the probabil
of finding a particlej , j Þ i , at time t and at distancer xy
given that att50 particlei was at the origin. It is defined by

Gd~r xy ,t !5
1

2pr xyN

3K (
i 51

N

(
j Þ i

N

d~r xy2ur xy,i~0!2r xy, j~ t !u!L . ~18!

Thus,Gd(r xy,0)5rg(r xy). For all calculations of the time
dependent properties of the system care was taken to a
that the analysis did not cover times for which the displa
ments of the particles exceeded half of the box length in
x or y direction.

III. RESULTS

Figure 2~a! displays the lateral pressure as a function
the two-dimensional number density in the range 0.7
<r* <0.980 for the colloid-colloid potential used in th
study. The lateral-pressure-density isotherm exhibits a
teau region~or a weak van der Waals loop! in the density
range 0.865<r* <0.895 indicating a first-order phase tra
sition. Figure 2~b! displays the global translational and or
entation order parameters as a function of density. For d
sities r* <0.860 the system is in the liquid phase, f
densities 0.870<r* <0.890 it is in the hexatic phase, whil
for densitiesr* >0.900 the system is in the solid phas
Despite the occurrence of a plateau in the isotherm coe
ing phases were not found in this region. We believe
absence of coexisting phases in our simulation sample
consequence of the finite size of the system, the small d
sity range over which the hexatic phase is stable, and
form of the colloid-colloid interaction.

The radial distribution function and the bond-orientati
correlation function are plotted in Fig. 3 forr* 50.860,
0.880, and 0.900. Both correlation functions have sh
range order for the liquid phase and long-range order for
solid phase, while the bond order correlation is long rang
and the pair correlation function is short ranged in t
hexatic phase. The equilibrium properties of this system
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very similar to those found in our earlier study using the M
and modified MR colloid-colloid interaction@45,48#. They
differ somewhat from those obtained experimentally
Karnchanaphanurach, Lin, and Rice for a quasi-tw
dimensional suspension of silica spheres in water confine
a very thin glass cell@49#. The colloid-colloid interaction in
that system is believed to be extremely short ranged, m
closer to a hard-sphere interaction than the interactions u
in this paper and our previous paper.

As a measure of the magnitude of the deviation fro
Gaussian form of the particle displacement distribution
plot in Fig. 4 the integral of the non-Gaussian parame
defined in Eq.~15!, as a function of the two-dimensiona
number density. Although the value of the integral is ve
small for the liquid phase, the particle motion is clearly h
erogeneous and correlated motion can be observed~see be-
low!. However, atr* 50.870, there is a sharp increase in t
value of the integral indicating an increasing deviation fro
the Gaussian displacement distribution as the hexatic ph
forms. The growing deviation from a Gaussian displacem
distribution extends into the solid phase. Due to the expon

FIG. 2. ~Color online! ~a! The lateral pressure~in reduced units!
as a function of the two-dimensional number density. The lo
density end of the plateau region atr* 50.865 signifies the onset o
the liquid phase while the high-density end atr* 50.895 marks the
onset of the solid phase.~b! The global translational and orientatio
order parameters indicating that the hexatic phase is stable for 0
<r<0.890.
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FIG. 3. The pair distribution functiong(r xy) ~left panel! and the bond-orientation functionG6(r xy) ~right panel! for r* 50.860, 0.880,
and 0.900 displaying the characteristic structural properties of the liquid, hexatic, and solid phases, respectively.
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tial increase in magnitude of the relevant dynamical rel
ation times, we are unable to provide meaningful results
r* >0.920. In Fig. 5 the value ofa2(t* ) is plotted as a
function of the reduced time for 0.860<r* <0.920. The
value of a2(t* ) exhibits a maximum whose magnitude i
creases as the density increases. The time for whicha2(t* )
is maximum tmax* increases exponentially with the densit
For r* < 0.850 the amplitude of this maximum is small~not
shown!.

In addition, for all densities at very short times (;t*
50.1–0.4), we find another maximum ina2(t* ) versust* .
These small amplitude maxima are displayed in Fig. 6 us
06150
-
r

g

a suitably expanded scale. The densities in Fig. 6 corresp
to liquid far from the liquidus (r* 50.780), hexatic near the
solidus (r* 50.890), and solid far from the solidus (r*
50.960); their amplitudes are 1–2 orders of magnitu
smaller than those of the maxima at longer times displa
in Fig. 5. The time decays associated with these n
Gaussian modes are short so that their effect on the valu
the integral ofa2(t* ) is negligible. In contrast to the behav
ior of the large amplitude maximum ofa2(t* ) at longer
time, the value ofa2(t* ) at the small amplitude maximum
and the time at which this maximum is observed decre
with the density.
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FREEZING TRANSITION AND CORRELATED MOTION . . . PHYSICAL REVIEW E68, 061508 ~2003!
In Fig. 7 the normalized velocity autocorrelation functio
is displayed. The time for which the function exhibits a min
mum with a negative value~or a decay to zero! corresponds
to the first collision; in a dense medium the first collision
an atom with its neighbors generates backscattering. The
havior shown in this figure is more pronounced at high
densities due to the cage effect, since the backscatterin
more nearly parallel to the initial direction the higher t
density, thereby generating a deeper minimum of the velo
autocorrelation function. The time at the minimum or at t
decay to zero~when such a minimum is absent at low de
sities!, corresponds to the time at which the small amplitu
maximum ofa2(t* ), shown in Fig. 6, occurs. We infer tha
the deviation from Gaussian behavior at very short time~col-
lision time! originates from the deviation from ballistic mo
tion due to the first collision event. The shift of the locatio
of the maximum to shorter times and the shift of the amp

FIG. 4. The integral of the absolute value of the non-Gauss
parameterua2@ ln(t* )#u over the natural logarithm of time, defined i
Eq. ~15!, as a function of the two-dimensional number density.

FIG. 5. ~Color online! The non-Gaussian parametera2(t* ) as a
function of the reduced timet* for two-dimensional number dens
ties 0.860<r* <0.920. Thex axis is plotted on a logarithmic scale
The value ofa2(t* ) at the maximum as well as the time which th
maximum appears increase for higher densities. The latter app
to depend exponentially on the density.
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tude of the maximum to lower values as the density is
creased is to be expected. At higher densities the collis
time is shorter, which means that stochastic behavior is
proached at shorter time and for smaller particle displa
ments, yielding smaller deviations of the particle displac
ment distribution from Gaussian form.

The time for which the large amplitude maximum
a2(t* ) is observed~Fig. 5! encompasses many collisio
events. For example, the maximum forr* 50.890 occurs at
aroundtmax* 535. Given the information in Fig. 7 this corre

n

ars

FIG. 6. ~Color online! Magnification of a2(t* ) at very short
times 531023<t* <53100, for two-dimensional number densi
ties that represent liquid far from freezing (r* 50.780), hexatic
near the melting point (r* 50.890), and solid far from melting
(r* 50.960). The small-amplitude maximum ofa2(t* ), observed
at very short times (;t* 50.1–0.4), occurs for all densities. Not
that in contrast to the behavior of the large-amplitude maximum
a2(t* ) at longer time shown in Fig. 5, the value ofa2(t* ) at the
maximum and the time at the maximum decrease with the den

FIG. 7. ~Color online! The normalized velocity autocorrelatio
function as a function of the reduced time for the three densi
shown in Fig. 6. The velocities are calculated only for the late
components in thexy plane. The time for which the function exhib
its a minimum~or a decay to zero! is the time it takes the particle
to travel between collisions and it corresponds to the time for wh
the small-amplitude maximum ofa2(t* ) shown in Fig. 6 is ob-
served.
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R. ZANGI AND S. A. RICE PHYSICAL REVIEW E68, 061508 ~2003!
sponds to 180 collision times. Forr* 50.910 the maximum
of a2(t* ) is observed attmax* 53000. This corresponds t
1.73104 collision times. It appears thattmax* increases expo
nentially with the density.

In Fig. 8 we display the lateral mean squared single p
ticle displacement as a function of the reduced time for
two-dimensional number densities shown in Figs. 6 and
For t* shorter than the particle collision time (t* <0.1) the
plots for all densities overlap as expected for density in
pendent ballistic motion. At long times, the particle moti
for the liquid far from freezing (r* 50.780) is diffusive, i.e.,
the mean squared displacement is a linear function of ti
For the solid far from the solidus (r* 50.960) the dynamics
at times as long as they were reached during the cur
simulations can be described as vibrations around lat
points; then the mean squared displacement is a constan
the hexatic phase near the solidus (r* 50.890), three distinct
regions of the mean squared displacements can be ident
At times longer than the collision time but shorter than t
long time behavior~‘‘intermediate time’’!, the dependence o
the mean squared displacement on time is sublinear. At l
time, the motion is diffusive, as is indicated by the line
slope, the same as that observed for the liquid far from fre
ing (r* 50.780). Note that forr* 50.890 the onset of the
long-time dynamical relaxation mode is the same astmax*
identified in Fig. 5.

Figure 9 displays the mean squared displacement for
density range 0.870<r* <0.920, showing the emergence
the three dynamical relaxation processes. The intermed
relaxation time appears forr* >0.870 and is broadened a
the density increases. This region, with a sublinear slope
densities between the liquidus and the solidus, attains a
slope when the system becomes completely solid (r*
50.900). The results indicate that the slowing down in
particle motion at intermediate times originates from t
cage effect. The onset of long-time dynamics increases

FIG. 8. ~Color online! The lateral mean squared displaceme
~in reduced units! as a function of the reduced time for the thr
densities shown in Figs. 6 and 7. Both axes are plotted on a l
rithmic scale. Forr* 50.890 the plot exhibits three different dy
namic relaxations modes. The onset of the relaxation mode at
time corresponds to the location of the maximum ofa2(t* )(;t*
535) shown in Fig. 5.
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ponentially with the density and it corresponds to the tim
for which a2(t* ) is maximum. The slope at intermedia
times observed forr* 50.870–0.890 is greater than zero b
smaller than one, which is a consequence of dynamical
erogeneity~Fig. 10!; there are two-dimensional ‘‘ordered

t

a-

ng

FIG. 9. ~Color online! The lateral mean squared displaceme
~in reduced units! as a function of the reduced time for two
dimensional number densities 0.860<r* <0.920. The curves show
the emergence of the three dynamic relaxation modes. The slop
the mean squared displacement for the longest relaxation mod
linear for all densities indicating diffusive behavior. However, t
slope for the intermediate relaxation mode is sublinear for dens
lower, and vanishes for densities higher, than the melting den
The time of the onset of the longest relaxation mode increases
ponentially with the density and it corresponds to the time
which a2(t* ) is maximum.

FIG. 10. ~Color online! A section of the simulation box~length
of box vector is 30s in each direction! for r* 50.880 showing the
particle trajectories. The total number of frames is 41 separated
time interval Dt* 52.5, so that the duration of each trajectory
t* 5100. At this density,tmax* 516 and^Dr xy

2 (t* 5100)&53.78. The
heterogeneity of the particle motion is evident, as are the vibratio
modes and correlated diffusion along the directions with stro
bond orientation correlation. The region indicated by the squar
plotted in Fig. 11.
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FREEZING TRANSITION AND CORRELATED MOTION . . . PHYSICAL REVIEW E68, 061508 ~2003!
domains~contributing zero to the slope of the mean squa
displacement! and one-dimensional ‘‘disordered’’ domain
~occurring at the boundaries of the ‘‘ordered’’ domains!. The
resulting displacement dynamics, therefore, has a mi
character. The coexistence between the dynamically ord
and disordered domains occurs for densities inside the
teau region of the lateral pressure-density isotherm e
though our simulation results do not display clear coex
ence between liquid and hexatic and hexatic and s
phases. The motion of the particles in the ‘‘disordered’’ d
main during tmax* is cooperative and quasi-one-dimension
~stringlike!, yielding the observed deviation from Gaussi
form of the displacement distribution.

Figure 10 shows the trajectory of the particles for a s
tion of the simulation box forr* 50.880. The time covered
is in the range 0<t* <100, which is about 6tmax* . For this
density and for this time interval the mean squared displa
ment^Dr xy

2 (t* 5100)&53.78. Thus, the trajectories of mo
of the particles in this figure represent diffusion for a d
tance of about 2 particle diameters. The cooperative mo
of the particles can be seen clearly in Fig. 11 where
attention is focused on an ordered domain and different
ticle trajectories are depicted in different colors. It is cle
the system is dynamically heterogeneous and that the d
sive paths of the particles are along the directions with str
bond orientation correlation.

It is computationally very demanding to approach t
long time scale forr* >0.920, therefore we are unable g
meaningful dynamical results for this region of the so
phase. Our analysis at short and intermediate time sc
reveals very small values of the integral ofa2(t* ) ~plotted in
Fig. 4! and mean squared displacements independent o
time, the same as plotted in Fig. 8 forr* 50.960. Thus, for
short and intermediate times the particle displacement di
bution of this system has a Gaussian form.

The time-dependent distributions of the particles mot

FIG. 11. ~Color! The same trajectory displayed in Fig. 1
shown on a smaller scale~length of box vector is 7s in each direc-
tion! and for an ordered domain. Trajectories of different partic
are depicted in different colors.
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were analyzed using the van Hove functions. In Fig. 12
plot the self-part of the van Hove function at short (t*
50.1) and long (t* 55400) times forr* 50.890. We also

plot the function @2r xy /^Dr xy
2 (t)&#e2r xy

2 /^Dr xy
2 (t)&, which is

the expression forGs(r xy ,t) obtained from the Gaussian ap
proximation @Eq. ~1!# multiplied by the radial elemen
2pr xy . The values of̂ Dr xy

2 (t)& were taken from indepen
dent simulations results shown in Fig. 8, namely,^Dr xy

2 (t*
50.1)&50.0118 and ^Dr xy

2 (t* 55400)&540.14. Hence,
there are no fitted parameters for the Gaussian form.
figures show that for the short and long time regimes
Gaussian approximation is almost identical to the simulat
results. Note thatGs(r xy ,t) is multiplied by 2pr xy to cancel
the radial averaging that is introduced in Eq.~17!. This is
necessary because the single-particle displacement dist
tion at intermediate times is not radially homogeneous; i
essentially that resulting from motion in one dimension. F
ure 13 displays the distinct part of the van Hove function
the short and long times analyzed in Fig. 12. At short tim

s

FIG. 12. ~Color online! The self-part of the van Hove function
multiplied by the radial element 2pr xy , as a function of the re-
duced lateral interparticle distance, plotted forr* 50.890 at ~a!
short time (t* 50.1) and~b! long time (t* 55400). The function
describing the single particle distribution derived from the Gauss
approximation@Eq. ~1!# is also plotted. The values of the mea
squared displacement̂ Dr xy

2 (t* 50.1)&50.0118 and ^Dr xy
2 (t*

55400)&540.14, were taken from Fig. 8.
8-9
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R. ZANGI AND S. A. RICE PHYSICAL REVIEW E68, 061508 ~2003!
Gd(r xy ,t) is very similar tog(r xy). At long time,Gd(r xy ,t)
is sensibly independent ofr xy as expected from stochast
particle dynamics.

In contrast to the behavior at short and long times,
particle dynamics at the transition from intermediate time
long time is very different. As shown above, there is a c
relation between the location oftmax and the time for which
the diffusive behavior begins. Figure 14 exhibits the self-p
of the van Hove function for four times aroundtmax* ~for
r* 50.890, tmax* ;35). The curves exhibit multiple maxim

FIG. 13. ~Color online! The distinct-part of the van Hove func
tion, normalized by the reduced two-dimensional number den
as a function of the reduced lateral interparticle distance, plotted
r* 50.890 at the short and the long times analyzed in Fig. 12.
short time behavior ofGd(r xy ,t) exhibits structure that is similar to
the static pair distribution functiong(r ). On the other hand, the
long time behavior ofGd(r xy ,t) is constant.

FIG. 14. ~Color online! The self-part of the van Hove function
multiplied by the radial element 2pr xy , as a function of the re-
duced lateral interparticle distance, plotted forr* 50.890 at four
values of time aroundtmax* ;35. The multiple maxima observed, a
the time increases, separated by a distance corresponding t
particle diameter indicate dynamical heterogeneity and that the
tion of the particles are described by correlated ‘‘jumps’’ to a neig
boring site and not via continuous diffusion.
06150
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indicating that the dynamics is heterogenous and that
particles experience cooperative ‘‘jumps’’ from one site
another. Thus, at specific values of time there are differ
subsets of particles that travel for different distances. T
fact that these maxima are separated by a distance that
responds the particle diameter indicates that the jump
namics, over 2–3 particle diameters, is in one dimensi
Figure 15 displays the distinct part of the van Hove functi
for the same times as in Fig. 14. It is evident that ast*
increases from 25 to 250 the probability of finding a partic
at the location where another particle resided att* 50 in-
creases dramatically. The minimum of the probability dist
bution at r xy* 50.5 confirms the picture of ‘‘jumps’’ rather
than continuous diffusion.

Correlated jump dynamics also occurs in the solid pha
Figure 16 displays the self-part of the van Hove function
r* 50.910 at times in the range 2500<t* <140 000. The
curves are similar to those shown in Fig. 14. However,
number of maxima is larger and they are better resolv
which indicates greater heterogeneity and stronger dyna
cal correlations. The amplitude of the first peak decrea
with time so that for t* >98 000, the second peak o
Gs(r xy ,t) has a larger amplitude than the first peak, whi
indicates that the majority of the particles have already d
fused at least one lattice site. Figure 17 displays the co
sponding distinct part of the van Hove function; it shows
large increase atr xy50.0 as the time increases while fo
larger values ofr xy it is hardly changed.

As is shown in Fig. 9, at very long time the colloid pa
ticle motion for all densities, even for densities in the so
phase, is diffusive. Cooperative jumps that lead to a diffus
process in crystals can be explained by a mechanism
involves many such correlated hops in random locations
random directions~along the crystallographic axes! yielding
random walk behavior.

y,
or
e

the
o-
-

FIG. 15. ~Color online! The distinct-part of the van Hove func
tion, normalized by the reduced two-dimensional number dens
as a function of the reduced lateral interparticle distance, plotted
r* 50.890 at the times analyzed in Fig. 14. For the times sho
the increase ofGd(r xy ,t)/r* at r xy50.0 with time, and the mini-
mum ofGd(r xy ,t)/r* at r xy50.5, points to the discontinuity of the
particle motion.
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FREEZING TRANSITION AND CORRELATED MOTION . . . PHYSICAL REVIEW E68, 061508 ~2003!
The amplitude ofa2(t* ) is small in the liquid phase an
a third ~intermediate! dynamical relaxation process is not o
served. However, the particle trajectories are heterogen
and the corresponding displacement distribution is n
Gaussian. This can be seen in Fig. 18 where we display
particle trajectories for a density in the liquid phaser*
50.820 for a time period oft* 56. At this density,tmax*
51.2 and ^Dr xy

2 (t* 56)&51.41. The cooperativity of the
particle motion is evident in linear stringlike paths and
circular paths with an immobile particle in the center.

The results of this study and of computational and exp
mental studies of other systems imply that the deviation
the distribution of particle displacements from Gauss
form is universal. Although our results are for a system w
a colloid-colloid potential that is everywhere repulsive, ve
similar results have been obtained for systems with
Marcus-Rice and modified Marcus-Rice potentials that w
designed to represent colloidal particles that are steric
stabilized with grafted polymers@45,48#. It is worth noting
that the change in the colloid-colloid interaction does caus
marked change in the thermodynamic behavior of the sys
in the high-density region of the phase diagram@50#.

FIG. 16. ~Color online! Same as Fig. 14 but for a density th
corresponds to the solid phaser* 50.910. Note that the amplitud
of the first peak decreases while the number of peaks increase
time. Gs(r xy ,t) at t* 5140 000 exhibits five maxima.
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IV. DISCUSSION

The results presented in this paper reveal a strong co
lation between the dynamical and the thermodynamic beh
ior of a quasi-two-dimensional system. Although dynamic
heterogeneity and correlated motion are present in the liq
phase, at the liquidus the distribution of single-particle d
placements develops a strong deviation from Gaussian f
and the mean squared displacement as a function of
exhibits a third relaxation region at intermediate times tha
characterized by a sublinear slope. The onset of this beha
is associated with the transition from the liquid to a hexa
phase with long-ranged bond orientation order. At the solid
this sublinear slope becomes zero for intermediate time.

The deviation of the single-particle displacement distrib
tion from Gaussian form is a result of correlated motion th
has also been observed in real quasi-two-dimensional co
suspensions. The results that are presented here show th
correlated motion becomes relatively more important in
solid phase. The continuous behavior of this mode of mot
from the liquid phase through the hexatic phase and into
crystalline phase suggests that it arises from the same ph
cal phenomenon. It is logical to assign the driver for moti

ith

FIG. 17. ~Color online! Same as Fig. 15 but for a density th
corresponds to the solid phaser* 50.910. Gd(r xy ,t) exhibits a
large increase atr xy50.0 as the time increases while for larg
values ofr xy it does not change.
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R. ZANGI AND S. A. RICE PHYSICAL REVIEW E68, 061508 ~2003!
in the solid phase to superpositions of normal mode vib
tions along paths that generate activated hopping of a
ticle. Normal mode analysis of the motion of a many-bo
system is rigorously possible in crystals for which the rest
ing forces acting on a particle are linear in the displacem
of the particle from its equilibrium position@51#. Neverthe-
less, Zwanzig has argued that collective variables, analog
to longitudinal and transverse phonons in crystals, do exis
classical liquids@52#. He noted, however, that their lifetime
are exceedingly short except in the glassy state. This idea
been followed up by Stratt and co-workers@53,54# and
Keyes and co-workers@55,56# via the definition of instanta-
neous normal modes of a liquid.

The fact that the appearance of the cooperative mo
starts at the density at which the hexatic phase starts to
pear points to the dependency of the existence of the no
modes on a medium with a critical degree of bond orien
tion correlation. We suggest that the correlated motion, e
at densities lower than the solidus density, is a result of

FIG. 18. A section of the simulation box~length of box vector is
40s in each direction! displaying the particle trajectories for a de
sity in the liquid phaser* 50.820. The total number of frames is 4
separated by time intervalDt* 50.15, so that the duration of eac
trajectory ist* 56. At this density,tmax* 51.2 and^Dr xy

2 (t* 51.2)&
50.249. The cooperativity of the particle motion is present as
ear and circular strings of motion.
.C

A.
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perposition of instantaneous normal mode excitations wit
free energy greater than the free energy barrier for hopp
As the density increases, the life times of the instantane
normal vibrations increase, thereby allowing more effect
competition between cooperative hopping motion and in
pendent particle motion, so that the cooperative hopping
comes increasingly dominant as the density increases.
natural hopping directions are along axes with strong bo
orientation correlation.

From a free energy landscape point of view, the slow
down in the dynamics at intermediate times can be in
preted in terms of trapping in local minima. Then the tran
tions from one local minimum to another define the displa
ment dynamics of the system. This picture was fi
introduced by Goldstein with respect to the glass transit
@57#. In a recent development with the same conceptual
sis, Halpern extended the random energy model for thr
dimensional supercooled liquids to include two routes for
particles to leave their traps by thermal excitation. The c
related motion of a group of particles was assigned a lo
activation energy and a smaller prefactor~a smaller matrix
element for the transition! than independent particle motion
so that at low temperature it dominates the diffusion mec
nism @58#.

There is a striking similarity between the distribution
single-particle displacements in a quasi-two-dimensional
uid near the liquidus with that obtained near the glass tr
sition for glass forming liquids. However, there is also
fundamental difference between these results. The glass
sition is a kinetic effect in the sense that it does not cor
spond to the global minimum of the free energy of the s
tem, hence the particle motion near the glass transition
tend to drive the system towards a more stable state. On
other hand, the correlated motion in a quasi-two-dimensio
liquid is present in the field of equilibrium states of the sy
tem and both the structural and thermal properties of
system are independent of the time.
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