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Hexagonal to square lattice conversion in bilayer systems

Ronen Zangi and Stuart A. Rice
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 6 July 1999!

We report the results of extensive molecular dynamics simulations of the reconstructive hexagonal to square
lattice conversion in bilayer colloid systems. Two types of interparticle potential were used to represent the
colloid-colloid interactions in the suspension. One potential, due to Marcus and Rice, is designed to describe
the interaction of sterically stabilized colloid particles. This potential has a term that represents the attraction
between colloid particles when there is incipient overlap between the stabilizing brushes on their surfaces, a
~soft repulsion! term that represents the entropy cost associated with interpenetration of the stabilizing brushes,
and a term that represents core-core repulsion. The other potential we used is an almost hard core repulsion
with continuous derivatives. Our results clearly show that the character of the reconstructive hexagonal to
square lattice conversion in bilayer colloid systems is potential dependent. For a system with colloid-colloid
interactions of the Marcus-Rice type, the packing of particles in the square array exhibits a large interlayer
lattice spacing, with the particles located at the minima of the attractive well. In this case the hexagonal to
square lattice transition is first order. For a system with hard core colloid-colloid interactions there are two
degenerate stable intermediate phases, linear and zigzag rhombic, that are separated from the square lattice by
strong first order transitions, and from the hexagonal lattice by either weak first or second order transitions.

PACS number~s!: 82.70.Dd, 61.20.Ja, 83.70.Hq, 82.70.Kj
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I. INTRODUCTION

Densely packed colloidal suspensions confined betw
parallel plates only a few particle diameters apart exhib
number of interesting phase transitions as the plate sep
tion and/or the density is varied. This paper is concern
with the character of the hexagonal to square lattice tra
tion that occurs in bilayers confined between plates. T
transition must be reconstructive as there is no gro
subgroup relation between the two phases.

There are two types of reconstructive phase transitio
one includes transitions realized by diffusion processes,
the other those realized by cooperative displacements o
oms. Group-subgroup related structural phase transition
a rule, satisfy the Landau criterion that the restructuring p
cess is described by the modes of one of the irreduc
representations of the parent-phase symmetry group.
crystal lattice change that occurs in a reconstructive ph
transition cannot be described by the modes of a single
ducible representation. A feature peculiar to reconstruc
transitions is that, along with displacement modes, lat
deformation plays an important role in the transformation
the crystal structure. An example of this type of transition
the bcc→fcc transformation that is realized by shear def
mation of~110! planes along the@11̄0# direction. Such tran-
sitions, called Martensitic transitions, typically have anom
lous properties@1#.

Consider, now, the possible particle packings in one
two layer systems. In a one layer, two-dimensional syst
packing of the particles in a square lattice is unstable rela
to packing of the particles in a hexagonal lattice. In sim
terms, in a one layer system in which the particles inter
via central forces, the lowest energy configuration has
maximum number of nearest neighbors. On the other ha
in a two layer system a two layer square lattice is stable.
worth noting that a stable one layer square lattice is poss
if the particle-particle interaction has appropriately sized t
PRE 611063-651X/2000/61~1!/671~11!/$15.00
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and three body contributions@2#. This form of packing has
been observed in a system of membrane-spanning bact
toxin proteins@3#.

Two types of cooperative particle displacements, with d
ferent symmetries, can transform a plane hexagonal lattic
a plane square lattice. If stable phases can be found a
those displacement modes, the two types of rearrangem
generate two phases with different symmetries. Indeed, in
mediate phases between the hexagonal and the square p
are known, namely, the so-called linear and zigzag rhom
phases@4,5#. In each of these intermediate phases the num
of in-plane nearest neighbors is four. In the linear phase
nearest neighbors are arranged with rectangular symm
and in the zigzag rhombic phase they have a kite sha
configuration.

Let n denote a layer with hexagonal lattice symmet
and h a layer with square lattice symmetry. The investig
tions reported in this paper concern the character of
2n→2h transition when the separation between the con
ing walls is 1.80 particle diameters. This transition is one
the sequence

1n→2h→2n→3h→3n→¯ ~1.1!

that occurs in a confined system as the distance between
two confining walls increases@6#. Alternatively, the nn

→nh transition can be induced by decreasing the density
the system for a constant value of the gap between the
confining walls.

A microscopic basis for the sequence of observed tra
tions, based on free volume theory, has been proposed@7#.
The result of these calculations for the case of a two la
hard sphere system is that the hexagonal to square la
transition is first order, and direct~i.e., without intermediate
phases!. However, the analysis did not allow for the exi
tence of intermediate phases, different fromnn and nh,
671 ©2000 The American Physical Society
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672 PRE 61RONEN ZANGI AND STUART A. RICE
that have particle packings that increase the free volum
the system.

When, in the vicinity of a phase transition, the correlati
length of the density-density correlation function is lar
relative to the range of intermolecular interactions, it is b
lieved that the specific form of the intermolecular intera
tions, and consequently the system Hamiltonian, plays a
nor role in determining the character of that phase transit
This notion underlies the introduction of universality class
and the prediction that the character of transitions that bel
to the same university class is the same. The results of
studies clearly show that the 2n→2h transition depends on
the interparticle potential. For a system with colloid-collo
interactions of the Marcus-Rice type, the two layer pack
of particles in the square array exhibits a large interla
lattice spacing, with the particles located at the minima of
attractive well. In this case the hexagonal to square lat
transition is first order. On the other hand, for a two lay
system with hard core colloid-colloid interactions there a
two degenerate stable intermediate states, linear and zi
rhombic phases, that are separated from the square lattic
strong first order transitions, and from the hexagonal lat
by either weak first order or by second order transitions.

II. MODEL SYSTEM AND COMPUTATIONAL. DETAILS

The model system that we have used to study
2n→2h phase transition consists of 4032 particles co
tained in a rectangular box with side lengths in the ra
x:y57:(8)/2). The wall separation was fixed at 1.80 pa
ticle diameters.

Since our simulations are concerned with the transit
between solids with different symmetries, we checked
effect of the shape of the box on the symmetry of the equ
brated crystal. For sample densities that support crystals
hexagonal and square symmetries we carried out simulat
with the above mentioned rectangular box for the case
the initial configuration is a perfect hexagonal lattice, a
with a square box~containing 4050 particles! with a perfect
square lattice as the initial configuration. We found that
only difference between the equilibrated structures in the
ferent simulation boxes is that a small number of defe
~less than 2%! is present in those cases for which the crys
symmetry does not match the shape of the simulation b
The presence of those defects had an insignificant effec
the calculated properties of the system. Armed with this
sult, and noting that the number of defects when the hexa
nal lattice was present in the square simulation box w
larger than the number of defects when the square lattice
present in the rectangular box, we have found it conven
to carry out our simulations in a rectangular box.

Our calculations were carried out, and the results are
ported below, in terms of the reduced variablesr * 5r /s,
z* 5z/s, T* 5kBT/«, r* 5rs2, andm51, with s the di-
ameter of the particle,« the depth of the attractive potentia
well, r the number density, andm the mass of the particle
Although the particles can move from one layer to anoth
on average the number of particles of each layer is the sa
so we choose to characterize the state of the system w
one layer-two-dimensional~2D! number density r2D
5N/(2A), whereA is the area of the simulation cell in th
of
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xy plane, andN is the total number of particles in the simu
lation. Periodic boundary conditions were imposed on
simulation cell in thex and y directions, but not in thez
direction. The same number of particles was present in
simulation cell for all of the densities studied. To study t
properties of the system with different particle densities
changed the area of the simulation cell in thexy plane.

Our calculations were carried out for particles subject
two different interactions. The first of these is the same p
interaction as the used in our previous work, namely,

u~r * !52« expF2S r * 2wc*

ww* D 4G12310219S r * 2
1

2D 264

11.2 expF2S r * 20.96

0.074 D 8G . ~2.1!

This pair potential~see Fig. 1! was designed by Marcus an
Rice to have the features of colloidal particles that are st
cally stabilized by grafted polymer brushes to prevent agg
gation induced by van der Waals forces. The first term in
~2.1! represents the attraction between colloid particles w
there is incipient overlap between the stabilizing brushes
their surfaces; for simplicity we have taken the function
form of this attraction to be an inverse even power expon
with depth«51.0kBT and widthww/s5ww* 50.006, cen-
tered atwc* 51.05. The second term in Eq.~2.1! is the core-
core repulsion, which is the dominant contribution tou(r * )
when r * <1; the functional form chosen is very nearly
hard core repulsion but has continuous derivatives. The
term in Eq.~2.1! is an interpolating soft repulsion, represen
ing the entropy cost associated with interpenetration of
stabilizing brushes attached to the surfaces of the col
particles; it plays the role of a spline function between t
aforementioned attractive and repulsive terms.

The other colloid-colloid interaction that we used is
almost hard core repulsion with continuous derivatives,

u~r * !51310238«S r * 2
1

2D 2128

. ~2.2!

The potentials represented in Eqs.~2.1! and ~2.2! are dis-
played in Fig. 1.

FIG. 1. Marcus-Rice-type interparticle potential~solid line! and
a nearly hard sphere interparticle potential~dashed line!.
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PRE 61 673HEXAGONAL TO SQUARE LATTICE CONVERSION IN . . .
The particles in the model system were also subjected
one body external potential in thez direction. Consequently
all of the thermodynamic properties of the model system
functions of the strength of this external potential. Howev
the shape of the potential,

uext~z* !5D«~z* !z, ~2.3!

is such as to confine the system to form a slab with w
specified thicknessH, so we can represent its thermodynam
properties with the variablesN, T, A, andH in place ofN, T,
V, and the strength of the external potential. In Eq.~2.3!, z*
is the distance from the center of the cell to the center
mass of the particle andz5128,D5131051; this potential
confines the particles as if they were in a cell with an eff
tive wall separation of 1.80s.

Since the linear momentum in thez direction is not con-
served in our model system~because there is no period
boundary condition in this degree of freedom!, the tempera-
ture is related to the kinetic energyK and the total number o
degrees of freedom, 3N22, by

T5
2K

3N22
. ~2.4!

The required temperature was created by multiplication
the velocities by an appropriate constant. The results of
simulations that we present in this paper correspond toT*
51.00. For densities inside the coexistence region of
system with Marcus-Rice-type interactions, where the h
agonal packing changes to square packing, we had to
crease the temperature of the system toT* 53.00 and then to
reduce it gradually back toT* 51.00 in order to observe
ordered coexisting phases. The same equilibration pro
was used, for the corresponding density region, for the s
tem with hard core interactions.

The lateral pressure,pl , was calculated from the latera
virial Wl ,

Wl52
1

2 (
i 51

N

(
j . i

N xi j
2 1yi j

2

r i j

]u~r !

]r U
r 5r i j

. ~2.5!

We find

pl5
NkBT1^Wl&

V
. ~2.6!

In order to investigate the mean square displacement
the particles as a function of time in each of the phases f
configuration with coexisting phases, we calculated

^r 2~ t !&a5
1

Na
(
i 51

Na

@rW i~ t !2rW i~0!#2. ~2.7!

The sum is over theNa particles of phasea, wherea5n, h.
We identified particles that belong to phases with hexago
and square packings as those that att50 are intralayer six
and four coordinated, respectively, knowing that the o
phases present in the system had these packing symme
The mean square displacements were computed for a
period that permitted the maximum displacements of the p
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ticles around their lattice sites. The assignments of the p
ticles to one or the other of the phases do not cha
throughout this time interval.

Part of our analysis of the results of the simulations d
pends on the construction of a two-dimensional Voron
polygon mapping of the particle configurations. The inte
layer nearest neighbors were identified using a cutoff d
tance of 1.2s between particles in different layers. Havin
determined then Voronoi vertices around each particle, th
area of each Voronoi polygon was calculated by triangu
tion from

A5
1

2 (
i 50

n21

~xiyi 112yixi 11!, ~2.8!

where (xi ,yi) are the coordinates of the Voronoi vertexi,
labeled counterclockwise with a cyclic permutation, i.e., t
index n is equal to 0.

The molecular dynamics~MD! simulations were carried
out using the velocity Verlet algorithm and the Verlet neig
bor list method for the calculation of the potential energ
The distance at which the potential was cut off was 1.5s, and
the neighbor list cutoff was 2.4 times the projected in-pla
average spacing of the particles. The need for updating of
neighbor list was checked at every time step. The aver
time step used was, in reduced units, 531024; the associ-
ated rms fluctuation in total energy did not exceed one par
105.

The initial configuration for the simulation of the syste
with the highest one layer areal density (r* 51.100) was
taken to be a perfect triangular lattice with half of the pa
ticles located in the planez50.4, and the other half in the
planez520.4. The lattice points of the layers were arrang
out-of-registry with respect to one another. The equilibriu
configuration corresponding to this density was used as
intial configuration for calculations with lower densities. Th
highest density configuration was equilibrated for
3107 MD steps, and the configurations at each of the ot
densities were equilibrated for 53106 MD steps. Trajectory
data were collected for 43105 MD steps, every 400 time
steps.

III. RESULTS

A. System with Marcus-Rice-type interactions

We have studied the phase transitions that occur in
density range 0.3800<r2D* <1.1000 in a two layer confined
colloidal suspension in which the colloid-colloid interactio
is of the Marcus-Rice form. The equilibrium state of th
system forr2D* >0.9900 is a two layer hexagonal solid, an
for r2D* <0.9200 is a two layer square solid. The stabil
domain of the two layer square solid ends with a melti
transition.

We analyze the change in symmetry accompanying
2n→2h transition using the distribution of the angle b
tween the lines that connect the centers of three adja
neighbors in the same layer~which we call the lattice angle!.
The value of the lattice angle is 60° for the hexagonal pha
and 90° for the square phase, and it has two values,u1 and
u2 , that are related byu25180°2u1 for the linear and the
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674 PRE 61RONEN ZANGI AND STUART A. RICE
zigzag rhombic phases. The distributions ofu1 andu2 for the
linear and the zigzag rhombic phases have equal amplitu

Figure 2 shows the distribution of the lattice angle for t
range of densities 0.9200<r2D* <0.9900 that span the con
version of the hexagonal phase to the square phase.
distribution suggests that then→2h conversion is a direc
first order transition. The in-plane configuration of the p
ticles for a density in the middle of the coexistance reg
(r2D* 50.9500) is shown in Fig. 3; the domains of the coe
isting solids are clearly identifiable. There is a correlati
between the structures of the upper and the lower layer
the system: specifically, the same region in thexy plane that
exhibits one of the packing structures in one layer, exhib
the same packing structure in the other layer, but with st
gered registry. We note that the domain wall between
two solid structures is composed of five-coordinated ato
The first order nature of the transition is also evident in
isothermal dependence of the lateral pressure on den
~Fig. 4!, in which there is a clearly developed van der Wa
loop.

Analysis of the intralayer and interlayer particle spaci
distributions~Fig. 5! for the configuration displayed in Fig.
show that the former distribution is unimodal~except for a
small shoulder at aroundr * 51.02!, and is centered aroun
the minimum of the attractive well of the Marcus-Rice p
tential. On the other hand, the interlayer particle spacing
tribution is bimodal; one of the peaks of the particle-parti
distance distribution corresponds to the minimum of the
tractive well, and the other is on the soft repulsion part of
Marcus-Rice potential. We can map those two interla

FIG. 2. The distribution of the lattice angle for the system w
Marcus-Rice-type interactions.~a! r2D* 50.9900, ~b! r2D* 50.9700,
~c! r2D* 50.9500, ~d! r2D* 50.9400, ~e! r2D* 50.9300, and~f! r2D*
50.9200.
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particle-particle distances on thexy plane by using a cutoff
distance which is at the mininmum between the peaks of
distribution (r * 51.028). The two groups of particle-particl
separations found define coherent domains in thexy plane
~see Fig. 6!. These data show that the short interlay
particle-particle separation is associated with the hexago
lattice, and the long interlayer particle-particle separation
associated with the square lattice. The fact that packing
the square lattice exploits positioning of the particles in
attractive well of the potential plays a crucial role in dete
mining the character of the 2n→2h transition.

As shown in Fig. 1, the attractive well of the Marcus-Ri
potential is centered at 1.05s, so only nearest neighbor inter
actions contribute to the energy of the system. Thus, w
the bilayer has hexagonal packing there are nine~six intra-

FIG. 3. The lateral configuration of a density (r2D* 50.9500)
close to the middle of the coexistence between 2n and 2h for the
system with Marcus-Rice-type interactions. The upper layer is
noted by empty circles, and the lower layer is denoted by fil
circles and is mostly hidden.

FIG. 4. The lateral pressure as a function of the one layer-
dimensional number density for the system with Marcus-Rice-t
interactions.
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PRE 61 675HEXAGONAL TO SQUARE LATTICE CONVERSION IN . . .
layer and three interlayer! nearest neighbor interactions p
particle, and when the bilayer has square packing there
eight ~four intralayer and four interlayer! nearest neighbo
interactions per particle. Nevertheless, the distribution of
energy per particle, displayed in Fig. 7 for three densit
that correspond to pure hexagonal packing~for a density just
above the end of the coexistence region,r2D* 50.9900), co-

FIG. 5. Intralayer~upper figure! and interlayer~lower figure!
particle-particle distance distribution for the configuration shown
Fig. 3.

FIG. 6. The projection of the short~black line! and long~gray
line! particle-particle separation on thexy plane for the configura-
tion shown in Fig. 3.
re

e
s

existence of hexagonal and square packing (r2D* 50.9500)
and pure square packing~for a density just below the end o
the coexistence region,r2D* 50.9200!, reveal that the square
packing configuration has a lower energy per particle th
the hexagonal packing configuration.

In Fig. 8 we show the results obtained from a tw
dimensional Voronoi polygon analysis of each of the lay
in the bilayer system. Specifically, the figure displays t
distributions of Voronoi polygon area whenr2D* 50.9900,
0.9500, and 0.9200. The Voronoi polygon area associa
with a particle in the square lattice is seen to be larger t
that associated with a particle in the hexagonal lattice. N
that whenr2D* 50.9500 the peaks of the bimodal distributio
of Voronoi polygon area are slightly shifted relative to th
values associated with the pure phases. We attribute this
ference to hysteresis which often occurs at a first order ph
transition; i.e., at the selected densities the square lattice
the hexagonal lattice are just inside the metastable regio

FIG. 7. Energy~potential plus kinetic! per particle distribution
for the system with Marcus-Rice-type interactions for the densit
r2D* 50.9900~empty triangle!, r2D* 50.9500~filled circle!, andr2D*
50.9200~empty square!.

FIG. 8. The Voronoi polygon area distribution for the syste
with Marcus-Rice-type interactions for the densities:r2D* 50.9900
~empty triangle!, r2D* 50.9500 ~filled circle!, and r2D* 50.9200
~empty square!.
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676 PRE 61RONEN ZANGI AND STUART A. RICE
the former is slightly compressed relative to its equilibriu
configuration and the latter is slightly expanded relative to
equilibrium configuration.

The Voronoi polygon analysis of a two-dimensional co
figuration of particles defines a tiling of thexy plane with the
area of each polygon uniquely associated with the part
inside the polygon. Noting that there is more space for m
tion in thez direction for a particle in the square lattice tha
for a particle in the hexagonal lattice, we conclude that if
particles were hard spheres there would be more free vol
per particle in the square lattice than in the hexagonal latt
hence a larger entropy per particle in the square lattice t
in the hexagonal lattice. This conclusion cannot be va
when the particle-particle interaction is of the Marcus-R
form, since we have just shown that in the coexistence reg
under examination the energy per particle is lower in
square lattice than it is in the hexagonal lattice. The reso
tion of this apparent contradiction is, of course, to be fou
in the different amplitudes of particle motion in the two la
tices. In Fig. 9 we show the mean square displacement o
particles of the configuration shown in Fig. 3. To better a
lyze the situation, we have shown separately the mean sq
displacement function and thexy component of the displace
ment in the square and in the hexagonal lattices. The res
show that the maximum displacements of the particles fr
the lattice points in the square lattice are smaller than th
of the particles from the lattice points in the hexagonal l
tice. We also find that, for a particle in the square lattice,
out-of-plane component of the displacement is greater t
that for a particle in the hexagonal lattice. Thus, for t
square lattice, the positioning of the particles in the attrac
well of the potential results in a restriction of the in-pla
motion of particles coupled with a reduction in the ener
per particle.

Given the preceding interpretation of the symbiosis
tween the form of the particle-particle potential and the s
bilization of the square lattice, what should we expect to
the character of the 2n→2h transition in a system in which
the particle-particle interaction lacks an attractive well?
answer this question we have carried out molecular dyn

FIG. 9. The mean square displacement as a function of time~in
reduced units!. The dashed lines are the in-plane~xy! components
of the displacement vector. For the hexagonal lattice, most of
displacement is in the plane.
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ics simulations of confined bilayer systems in which t
particle-particle interaction is a hard core repulsion.

B. System with hard sphere interactions

We have studied the 2n→2h transition in the density
range 0.8800<r2D* <1.1000 in a two layer confined colloida
suspension in which the colloid-colloid interaction is an
most hard core repulsion with continuous derivatives@see
Eq. ~2.2!#. As in the preceding study, the wall separation w
fixed at 1.80s. The equilibrium state of the system forr2D*
>1.0300 is a two layer hexagonal solid, and forr2D*
<0.9300 is a two layer square solid.

The distribution of the lattice angle for the density ran
0.9300<r2D* <1.0300 is shown in Fig. 10. Whenr2D*
51.0200, there is a rhombic phase whose smaller lat
angle, u1 , increases with decreasing density untilr2D*
50.9700, whereu1575°, signaling the onset of coexistenc
between the rhombic phase and the 2h phase. The latera
pressure as a function of the one layer-two-dimensio
number density is shown in Fig. 11. In the density ran
0.9500<r2D* <0.9800, this isotherm displays a van d
Waals loop. The density range over which the van der Wa
loop exists matches that for coexistence between the t
layer-rhombic and 2h phases, which clearly identifies th
first order character of that transition.

Identification of the character of the 2n→two-layer-
rhombic transition is harder. Our results indicate that t
transition can be either weakly first order or continuous. T
ambiguity in our results is a consequence of the fact that
transition spans a very small density range. Whenr2D*

e

FIG. 10. The distribution of the lattice angle for the system w
hard core repulsions.~a! r2D* 51.0300, ~b! r2D* 51.0200, ~c! r2D*
51.0000,~d! r2D* 50.9800,~e! r2D* 50.9600, and~f! r2D* 50.9300.
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PRE 61 677HEXAGONAL TO SQUARE LATTICE CONVERSION IN . . .
51.1200,u1568°, and our data show that the stable pha
is rhombic. For slightly higher densities the existence o
stable rhombic phase with a value ofu1 that is close to 60°
can be masked by thermal fluctuations.

The in-plane configuration of the particles whenr2D*
50.9800~corresponding to the rhombic phase just before
onset of coxistence with the 2h phase! is shown in Fig. 12.
The coexistence between linear and zigzag rhombic phas
readily identified after examination of a small section of th
configuration that includes both phases~Fig. 13!. If we sup-
pose the rhombic phase to be generated by distortion of
hexagonal lattice via particle displacement, the structure
the distortion can be realized by connecting the six clos
neighbors of a central particle. The structure of the distort
for the zigzag rhombic phase is shown in the lower right

FIG. 11. The lateral pressure as a function of the one layer-
dimensional number density for the system with hard c
repulsions.

FIG. 12. The lateral configuration of a density (r2D* 50.9800)
that corresponds to the rhombic phase for the system with hard
repulsions. The upper layer is denoted by empty circles, and
lower layer is denoted by filled circles and is mostly hidden.
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Fig. 13. Note that two of the six neighbors are no long
nearest neighbors, and the nearest neighbor configuratio
kite shaped~lower left!. The corresponding distortion for th
linear rhombic phase is shown in the upper part of Fig.
where the shape of the arrangement of the four nearest ne
bors is rectangular. The results of our simulations show t
for the pure rhombic phase, 1.0200<r2D* <0.9800, the lateral
pressure isotherm does not show a van der Waals loop~Fig.
11!. Since we have found only one set of values foru1 and
u2 , a unimodal distribution of the energy per particle~Fig.
14! and a unimodal distribution of the Voronoi polygon ar
~Fig. 15! for any density that corresponds to the rhomb
phase, we infer that the linear and zigzag rhombic phases
degenerate and have the same lattice angle, as already
gested by Schmidt and Lo¨wen @5#.

IV. DISCUSSION

In a system in which the particle-particle interactions a
hard sphere repulsions, the 2n→2h transition is entropy
driven. In contrast, in a system in which the particle-parti
interactions are of the Marcus-Rice form, the existence of
attractive well plays a crucial role in the 2n→2h transition:
it stabilizes the hexagonal phase and the square phase a
expense of the rhombic phase. We suggest that this sta
zation is a consequence of the number of nearest neig
interactions in each of the phases. Although the bilayer w
square packing has eight nearest neighbor interactions
the bilayer with hexagonal packing has nine nearest neigh
interactions, for some density range the former is more sta
because of the occupation of sites with interlayer partic
particle separations that correspond to the position of
attractive well, and hence decrease the energy of the sys
The bilayer with rhombic packing on the other hand has o

o
e

re
e

FIG. 13. Small section of Fig. 12 showing coexistence betwe
linear ~upper part! and zigzag~lower part! rhombic phases. The two
hexagons on the right show the distortions of the hexagonal la
to form the rhombic phases, and on the left are the arrangemen
the nearest neighbors in each of the phases. Just one layer is sh
and the size of the circles is smaller than the actual size of
particles.
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678 PRE 61RONEN ZANGI AND STUART A. RICE
seven~four intralayer and three interlayer! nearest neighbo
interactions. The close packed density of the rhombic ph
is larger than that of the square phase but smaller than th
the hexagonal phase. Then, at a fixed density where
rhombic phase can be found, it is preferable to have
coexistence of square and hexagonal phases rather th
pure rhombic phase.

In a single layer colloid suspension in which the partic
particle interaction is of the Marcus-Rice form, there can
coexistence of different particle-particle separations with
phase separation@8#. Zangi and Rice showed that there is
density range in which the one layer hexagonal solid i
single phase with mixed short and long particle-parti
separations. The long particle-particle separations co
spond to the position of the attractive well in the interparti
potential. The short particle-particle separations, which
crease continuously as the density increases, correspon
positions along the soft repulsive part of the Marcus-R
potential, and the transition from a phase with only lo

FIG. 14. Energy~potential plus kinetic! per particle distribution
for the system with hard core repulsions for densities that co
sponds to the rhombic phase:r2D* 51.0200 ~empty triangle!, r2D*
51.0000~filled circle!, andr2D* 50.9800~empty square!.

FIG. 15. The Voronoi polygon area distribution for the syste
with hard core repulsions for densities that correspond to the rh
bic phase: r2D* 51.0200 ~empty triangle!, r2D* 51.0000 ~filled
circle!, andr2D* 50.9800~empty square!.
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particle-particle separations to one with only short partic
particle separations is continuous. The explanation propo
for this behavior starts with the observation that the one la
system exhibits only hexagonal packing. Then the poten
energy of the system is the same for a fixed number of s
and long particle-particle spacings, independent on their s
tial distribution, and the equilibrium distribution of particle
particle separations is determined by maximizing the entr
of the system. A similar situation is encountered in the t
layer system studied in this paper when the wall separatio
in the range 1.80s<H<2.30s. In that case we find tha
there is a continuous transformation between the limit
configurations associated with the long and short partic
particle separations in each of the layers, without any ph
separation. Throughout this transformation the system ret
two layer hexagonal packing~buckled or unbuckled!. For the
wall separation range 1.90s<H<2.30s two layer square

-

-

FIG. 16. The interlayer lattice spacing distribution for the sy
tem with a Marcus-Rice interparticle potential in the density ran
0.9200<r2D* <0.9900 that corresponds to the 2n→2h transition.

FIG. 17. Voronoi polygon construction~empty squares are th
Voronoi vertices! for a perfect arrangement of a square lattice.
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packing is unstable with respect to two layer hexago
packing at all densities. Over the density range the 2n phase
~buckled or unbuckled! is stable we find, just as in the on
layer case, coexistence of interlayer long and short parti
particle spacings and a continuous transition between the
limiting configurations. It appears to be the case that j
when the wall separation reaches a value which permits
two layer square packed phase to be stable (H51.80s),
coupling of the interlayer particle-particle separation tran
tion to the 2n→2h transition yields a situation where th
values of the short and long interlayer particle-particle d
tances are fixed for the entire range of densities that span
transition ~Fig. 16!. In this case the potential energy of th
system is no longer independent of the spatial distribution
the short and long interlayer particle-particle spacings;
phase separation that is observed corresponds to the con
ration that minimizes the energy~and thereby also the fre
energy! of the system, and the transition becomes stron
first order.
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APPENDIX: NEAREST NEIGHBOR SEARCH

Our analysis of the structure of a confined two layer c
loidal suspension exploits the character of the first coord
tion shell of a particle. We carry out this analysis via
Voronoi polygon mapping of the particle configuration,
method that is widely used in computational geome
@9,10#.

FIG. 18. Voronoi polygon construction~empty squares are th
Voronoi vertices! for a slightly distorted arrangement of a squa
lattice that is generated by moving the upper right particle of F
17 by 10% of the interparticle distance to the left.
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The Voronoi polygon associated with particlei, V( i ), is
determined by the intersection of the half-planes that bis
the vectorsr i j from the center of particlei to the centers of
the neighboring particles. It can be shown that the part
that is the closest to particlei defines an edge ofV( i ). More-
over it turns out, for cases in which the interparticle distan
is of the order of the particle size, that every particle in t
first coordination shell defines an edge ofV( i ). Although the
converse is not, in general, true, it is customary to assoc
the particles in the first coordination shell with the edges
V( i ).

In the Varonoi polygon mapping of a perfect lattice
T50 every edge of a polygon is associated with~defines! a
nearest neighbor particle, because all the particles assoc
with these edges have the same distance from particlei and
are, equally, the closest to it. Noting that in our applicati
the Voronoi mapping is applied to an instantaneous confi
ration sampled from an equilibrium ensemble, we recogn

.

FIG. 19. The configuration of a square lattice from a bilay
system~just one layer is shown!.

FIG. 20. The pair correlation function of the structure shown
Fig. 19.
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that the fluctuations characteristic of thermal equilibriu
slightly distort the structure of the map, and that the dis
bution of separations between the central particle and th
in the first coordination shell has a nonzero width. Since
are assuming cases for which every particle in the first co
dination shell defines an edge ofV( i ), these slightly dis-
torted Voronoi polygons can generate situations where
number of edges ofV( i ) is equal to or larger than the num
ber of nearest neighbors to particlei. It can be shown@9# that
the maximum number of unit spheres that can be in con
with a given sphere is an upper bound to the average num
of Voronoi polygon edges for any set of points~it is six for
two dimensions, 12 for three dimensions, etc.!. Hence, the
association of the particles in the first coordination shell w
the edges ofV( i ) is adequate for any system in which th
average number of nearest neighbors is maximal. This in
ence follows from the observation that in such a system
any positive defect in the Voronoi polygon structure there
a compensating negative defect.

In the application of a Voronoi mapping to the squa
lattice we note that each vertex is a point that is equidis
from four particles~Fig. 17!. The two particles that lie on the
diagonals of the square are not nearest neighbors of
other, and the perpendicular bisector of the line betw
those two particles does not enter the Voronoi polyg
Rather, that line passes through one of Voronoi polygon v
tices, and we again conclude that each edge of the Voro
polygon is associated with a nearest neighbor. The deg
eracy described breaks down when there is a small distor
of the square lattice. In that case a vertex of the Voro
polygon for the perfect lattice splits into two vertice
thereby introducing an additional edge to the Voronoi po
gon for the distorted lattice~Fig. 18!. The bisected particle
particle separation that is the source of the new edge belo
to the second coordination shell, so that the list of Voro
edges then includes both those associated with the ne
neighbor particles and with other particles. However,
number of edges is subject to the constraint that the ave
number of Voronoi polygon edges can not exceed six.
must extract from this extended list just the particles of
first coordination shell. Just this problem was also enco
tered in the work of Weiss, Oxtoby, and Grier@11#.

TABLE I. The results for nearest neighbor search for a sligh
distorted square lattice with 2025 sites.

Number
of NN’s

Population determined by

Number of
Voronoi edges

Cutoff distance
of r 51.35s

Voronoi polygon
symmetry

3 0 0 0
4 45 2025 2025
5 484 0 0
6 970 0 0
7 478 0 0
8 48 0 0

9 and up 0 0 0
-
se
e
r-

e

ct
er

r-
r

s

nt

ch
n
.
r-
oi
n-
n
i

-

gs
i
est
e
ge
e
e
-

The Voronoi polygon edges that are associated with p
ticles that are not in the first coordination shell are in gene
small. Consequently, the orientations of the Voronoi polyg
vertices do not change much relative to where they were
the perfect square lattice~see Fig. 18!. Then the number of
particles in the first coordination shell determines the sh
of the Voronoi polygon, and we can use its symmetry
calculate the number of nearest neighbors. To this end,
calculated the modulus of the quantity

Cmi5
1

ni
(
j 51

ni

eimu i j . ~A1!

for m5ni ,ni21, . . . ,3,whereni is the number of vertices
of V( i ), 3 is the smallest closed polygon andu i j is the angle
between an arbitrary fixed axis and the line connecting p
ticle i and vertexj of its Voronoi polygon. The symmetry o
the Voronoi polygon is determined bym̃, which is the value
of m that maximizesuCmiu2. The m̃ nearest neighbors to
particlesi are thus them̃ particles with the smallestr i j .

To check the accuracy of our method of calculating t
number of nearest neighbors, we analyzed the Voronoi p
gon mapping of the configuration of 2025 particles in o
layer of a two layer thermally equilibrated system wi
square lattice symmetry~Fig. 19!. We also calculated the
pair correlation function of this layer~Fig. 20!, and deter-
mined that the minimum between the first and second pe
is at r 51.35s. The number of nearest neighbors was th
calculated from~i! the number of Voronoi polygon edges
~ii ! the number of particles that are closer than 1.35s to a
selected particle, and~iii ! the Voronoi polygon symmetry
The results obtained are summarized in Table I. We find t
the results of calculations~ii ! and~iii ! agree in all details. We
note that the average number of Voronoi polygon edges
this slightly distorted square lattice is six. The determinat
of the number of nearest neighbors by the method descr
here also correctly reproduces the coexistence of four, fi
six, and seven coordinated sites.

There is a density range for which, in the rhombic pha
the lattice angleu1 is close to 60°. When this is the cas
thermal fluctuations of the lattice angle can be larger than
difference betweenu1 and 60°, and the number of neare
neighbors determined by the Voronoi polygon symme
analysis is six rather than four. To overcome this problem
used information obtained from the particle spacing distrib
tion. If the number of apparent nearest neighbors is de
mined for the rhombic phase to be six, then two of tho
must be more distant from the central particle than the ot
four. For densities with a bimodal particle spacing distrib
tion we reduced the number of nearest neighbors from si
four. The reduction of the number of nearest neighbors w
applied just for sites where the two largest apparent nea
neighbor distances were, on average, larger than the ave
value of the four smallest nearest neighbor separations
the width of the distribution of separations. In the other lim
iting case, whenu1 is close to 90°, there is coexistence b
tween a rhombic phase withu1.75° and a square phase, s
the determination of the number of nearest neighbors fr
the Voronoi polygon symmetry is not compromised.
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