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Nature of the transition from two- to three-dimensional ordering
in a confined colloidal suspension

Ronen Zangi and Stuart A. Rice
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 23 June 1999!

We report the results of extensive molecular dynamics simulations of solid-to-solid transitions in two- to
six-layer colloidal suspensions confined between two smooth parallel walls. The studies are designed to
elucidate the ordered particle packings that interpolate between the structures of two- and three-dimensional
crystals in a confined space. At a fixed density per layer, as the wall separation increases we find a sequence
of stable phases, each characterized by uniform amplitude buckling along the normal to the layer planes. The
buckling is coupled to an in-plane ordering transition. The buckled phases alternate with phases whose struc-
tures contain only parallel planes of particles. The relative densities of the positively and negatively displaced
particles in a buckled layer, the in-plane structures, and the behavior with respect to increasing wall separation
of the split density distribution that characterizes a buckled layer, clearly identify these layers as intermediates
in the reconstructive transformationsnn→(n11)h that occur when the character of the constrained space
evolves from being two dimensional to being three dimensional~n denotes layers with hexagonal packing
symmetry, whileh denotes layers with square packing symmetry!. The two transitions,nn→n-buckled
→(n11)h, are found to be first order.

PACS number~s!: 64.70.Dv
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I. INTRODUCTION

Since the first observations of ordering in colloidal su
pensions, by Perrin in 1909@1#, considerable effort has bee
devoted to characterizing the evolution of three-dimensio
ordering from two-dimensional ordering. In 1983 Pan
Pieranski and Strzelecki@2# reported the results of exper
mental studies of a suspension of charged colloidal parti
confined in a wedge shaped cell. They showed that as
distance between the confining walls increases the sequ
of stable crystal structures is

1n→2h→2n→3h→3n→¯ . ~1.1!

In Eq. ~1.1!, the symboln denotes crystal slabs with hex
agonal~triangular! symmetry, while the symbolh denotes
crystal slabs with square symmetry. This structural route
tween two- and three-dimensional solids involves two typ
of reconstructive transformations: first a (n21)n→nh

conversion, and second anh→nn conversion. A qualita-
tive understanding of the basis for these conversions ca
obtained from a study of hard sphere packing betw
smooth plates. In this case the equilibrium state, in the li
of high pressure, corresponds to maximum volume den
@3#. It is found that as the gap between the plates increa
crystal slabs with triangular packing and square packing
alternately most stable. We note that this study does
prove that the structures identified in Eq.~1.1! have the high-
est density for an arbitrarily chosen slab thickness, since o
the structures cited were examined.

Another view of the sequence of transitions displayed
Eq. ~1.1! is based on the observation that the one-layer h
agonal and one-layer square symmetries can be related t
~111! and~100! planes in a face centered cubic~fcc! crystal,
respectively. Then the sequence in Eq.~1.1! can be viewed
as the result of slicingn layers with different orientations o
PRE 611063-651X/2000/61~1!/660~11!/$15.00
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the fcc structure. As noted in Ref.@3#, there are several rea
sons for not accepting this interpretation, and it is one of
goals of our work to show that the transitions depicted in E
~1.1! are not aptly described as associated with slices o
three-dimensional fcc crystal.

The structural sequence displayed in Eq.~1.1!, which in-
cludes only hexagonal and square symmetries, implies
increasing the wall separation leads only to integral numb
of layers in the available space. When the number of layer
small there will then be large fluctuations in density a
pressure. Hence, when the available gap is greater than
needed for thenn structure but smaller than that needed f
the (n11)h structure, instability with respect to other stru
tures can occur. Consider, for example, a one-layer sys
In this system the in-plane packing structure is hexago
and the density distribution along the normal to the pla
~which we call the longitudinal density distribution! can have
one peak, corresponding to one layer with thermal mot
normal to the layer, or it can have two peaks, correspond
to one layer adjacent to each wall. Each of these layers
supports thermal motion normal to the plane. The buckl
of a plane of particles is coupled to an in-plane ord
disorder transition. Specifically, the lateral positions of p
ticles that are localized at the same height are ordered.
ordering can take the form of linear or zigzag single rows
particles, and a well ordered phase appears when there
nonoverlapping split peaks in the longitudinal density dis
bution. Such transitions have been observed in single-la
colloidal suspensions in experiments@4–7# and in computer
simulation studies@9,14#. These results also follow from a
analysis based on the Landau theory of phase transition
which the thermodynamic potential is expanded about t
for the flat state@8#, and from an analysis based on fre
volume theory@9#. It is found that the stability region of the
buckled phase increases with the gap between the confi
walls until the buckled phase becomes unstable with res
660 ©2000 The American Physical Society
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PRE 61 661NATURE OF THE TRANSITION FROM TWO- TO THREE- . . .
to the formation of a crystal with an additional layer. Th
formation of a buckled phase reduces the density fluctuat
when the distance between the confining walls is increa
An examination of the symmetry of the emerging up a
down phases for a single layer leads to the suggestion
the buckled phase is an intermediate structure between
layer hexagonal and two-layer square lattices@9#. It is worth
noting that the buckling transition is not restricted to collo
dal systems; it has also been observed in amphiphilic m
branes@10–12# and in Langmuir monolayers@13#. The ex-
perimental observations are backed up by the results
computer simulation studies of confined hard spheres@9#, of
confined particles with soft repulsive interactions@14#, and

FIG. 1. Marcus-Rice-type potential.

FIG. 2. Longitudinal density distributions at constant late
pressure (pl* 545) and temperature.~a! H51.90s, ~b! H52.00s,
~c! H52.10s, ~d! H52.20s, ~e! H52.30s, and~f! H52.40s.
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of confined particles with soft repulsive and attractive int
actions @14#. The results obtained from the studies of t
hard sphere system suggest that the buckling transition
be entropy induced. This inference follows from the obs
vation that, in an inhomogenuous system, the in-plane di
tion is distinct from the out-of-plane direction, and there is
competition between the in-plane and out-of-plane motio
of the particles.

In this paper we report the results of extensive molecu
dynamics simulations of the buckling transition in multilay
systems enclosed between parallel smooth planar walls.
find that, as for the case of the one-layer buckling transiti
the multilayer buckling transitions are characterized by

l
FIG. 3. Two-layer buckling. The longitudinal density profile fo

H52.20s andr2D* 51.1000~volume fraction50.523!. The fraction
near each peak is the number of particles that corresponds to
peak divided byNlayer.

TABLE I. The values ofD @in Eq. ~2.2!# and the wall separation
H.

D H/s

131051 1.80
531043 1.90
231038 2.00
131033 2.10
131028 2.20
131024 2.30
131022 2.35
131020 2.40
13106 2.82
13103 2.90
13100 3.02
131025 3.20
531027 3.25
131028 3.30
1310217 3.74
1310220 3.90
1310223 4.05
1310226 4.20
1310232 4.59
5310246 5.58
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662 PRE 61RONEN ZANGI AND STUART A. RICE
two-peaked longitudinal density distribution for each lay
and are coupled to an in-plane ordering transition. The r
tive densities, the in-plane structure, and the behavior u
increasing the wall separation of the longitudinal density d
tribution clearly imply that these buckled phases interpol
the reconstructive transformationsnn→(n11)h. The two
transitions, nn→n-buckled→(n11)h, are found to be
first order.

The other type of transition that occurs when crystall
structures evolve between two and three dimensions,nh

FIG. 4. Two-layer buckling: two rows are buckled against
single row. The lateral configuration of the upper layer in Fig.
The particles that correspond to peak 2a are denoted by empty
circles, and those that correspond to peak 2b by black circles.

FIG. 5. Two-layer buckling. The lateral correlation of the tw
inner peaks in Fig. 3. The particles that correspond to peak 2a are
denoted by black circles, and those that correspond to peak 1b by
empty circles.
,
a-
n
-
e

→nn, is the subject of current research and will be describ
in a later publication. The preliminary results obtained fro
simulations of a two-layer system suggest that this conv
sion is potential dependent and can involve a rhombic ph
as an intermediate.

II. MODEL SYSTEM AND COMPUTATIONAL DETAILS

The model systems that we have studied consist of 2
layers of particles, each layer containing 2016 particles. T
particles are contained in a simulation box which is rect
gular in the xy plane, with side lengths in the ratiox:y
57:(8)/2). Periodic boundary conditions were imposed
the x andy directions, but not in thez direction. To confine
the particles to a slab of specified thickness,H, they were
subjected to a one-body external potential in thez direction
~see below!.

We find it convenient to use the reduced variablesr *
5r /s, z* 5z/s, T* 5kBT/«, r* 5rs2, andm51, with s
the diameter of the particle,« the depth of the attractive
potential well,r the number density, andm the mass of the
particle. The systems we have studied all have high den

.

FIG. 6. The lateral pressure as a function of the one-layer t
dimensional number density, indicating the 2n→two-layer-buckled
transition when2.10s<H<2.30s.

TABLE II. The phase boundary of the two-layer ordered buc
led phase for different values of the wall separation~the numbers
shown are the lowest values ofr2D* that support this phase!.

H/s r2D*

2.00 1.150
2.10 1.120
2.20 1.100
2.30 1.090
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PRE 61 663NATURE OF THE TRANSITION FROM TWO- TO THREE- . . .
Consequently, although the particles can move in thez direc-
tion, from one layer to another, on average the numbe
particles in each layer is the same. Therefore, we choos
characterize the state of the system with the one-layer t
dimensional~2D! number densityr2D5Nlayer/A, whereA is
the area of the simulation cell in thexy plane, andNlayer is
the average number of particles per layer.

The majority of our calculations were carried out for pa
ticles subject to the same pair interaction as used in our
vious work, namely,

FIG. 7. The lateral pressure as a function of the one-layer t
dimensional number density, indicating the two-layer-buckled→3h

transition whenH52.40s.
f
to

o-

e-

u~r * !52« expF2S r * 2wc*

ww* D 4G12310219S r * 2
1

2D 264

11.2 expF2S r * 20.96

0.074 D 8G . ~2.1!

This pair potential~see Fig. 1! was designed by Marcus an
Rice to have the features of colloidal particles that are st
cally stabilized by grafted polymer brushes to prevent agg
gation induced by van der Waals forces. The first term in
~2.1! represents the attraction between colloid particles w
there is incipient overlap between the stabilizing brushes
their surfaces; for simplicity we have taken the function
form of this attraction to be an inverse even power expon
with depth«51.0kBT and widthww/s5ww* 50.006, cen-
tered atwc* 51.05. The second term in Eq.~2.1! is the core-
core repulsion, which is the dominant contribution tou(r * )
when r * <1; the functional form chosen is very nearly
hard core repulsion but has continuous derivatives. The
term in Eq.~2.1! is an interpolating soft repulsion, represen
ing the entropy cost associated with interpenetration of
stabilizing brushes attached to the surfaces of the col
particles; it plays the role of a spline function between t
aforementioned attractive and repulsive terms.

The confinement of the particles in the6z directions is
affected by the action of a one bodyz dependent externa
field. Different forms can be chosen for this field, the sim
plest being that for hard parallel walls. Then the extra deg
of freedom that is introduced in the thermodynamic desc
tion of the system is the spacing between those two wa
Because of their macroscopic size, colloidal spheres do
‘‘feel’’ the atomic scale granularity of the walls, so the wal
can be regarded as smooth. The shape of the potentia
have chosen,

uext~z* !5D«~z* !z, ~2.2!

-

FIG. 8. The longitudinal den-
sity distributions at constantN, A,
and T (r2D* 51.2000), for the
three-layer-buckled→4h transi-
tion. ~a! H53.02s, ~b! H
53.20s, ~c! H53.25s, and ~d!
H53.30s.
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664 PRE 61RONEN ZANGI AND STUART A. RICE
is such as to confine the system to form a slab with w
specified heightH. In Eq. ~2.2!, z* is the distance from the
center of the cell to the center of mass of the particle a
z5128. The value ofD determines the distanceH between
the walls. Table I displays the values ofD and the corre-
sponding values ofH.

The lateral and transverse pressurespl and pt , respec-
tively, were calculated from the lateral and transverse vir
Wl andWt , where

Wl52
1

2 (
i 51

N

(
j . i

N xi j
2 1yi j

2

r i j

]u~r !

]r U
r 5r i j

, ~2.3a!

FIG. 9. The lateral~empty circles! and transverse~filled circles!
pressures as a function of the height between the two confi
walls at constantN, A, andT (r2D* 51.2000), indicating the three
layer-buckled→4h transition.

FIG. 10. Three-layer buckling. The longitudinal density profi
for H52.90s andr2D* 51.1600~the volume fraction is 0.628!. The
fraction near each peak is the number of particles that corresp
to this peak divided byNlayer.
ll

d

ls

Wt52
1

2 (
i 51

N

(
j . i

N zi j
2

r i j

]u~r !

]r U
r 5r i j

. ~2.3b!

We find

pl5
NkBT1^Wl&

V
, ~2.4a!

g

ds

FIG. 11. Three-layer buckling: three rows are buckled again
single row. The lateral configuration of the upper layer in Fig. 1
The particles that correspond to peak 3a are denoted by empty
circles, and those that correspond to peak 3b by black circles.

FIG. 12. Three-layer buckling: two rows are buckled agai
two rows. The lateral configuration of the middle layer in Fig. 1
The particles that correspond to peak 2a are denoted by empty
circles, and those that correspond to peak 2b by black circles.
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PRE 61 665NATURE OF THE TRANSITION FROM TWO- TO THREE- . . .
pt5
NkBT12^Wt&

V8
, ~2.4b!

whereV85Ah andH5s1h.
The molecular dynamics~MD! simulations were carried

out using the velocity Verlet algorithm and the Verlet neig
bor list method for the calculation of the potential energ
The distance at which the potential was cut off was 1.5s, and
the neighbor list cut off was 2.4 times the projected in-pla
average spacing of the particles. The need for updating o
neighbor list was checked at every time step. The aver
time step used was, in reduced units, 531024; the associ-
ated rms fluctuation in total energy did not exceed one pa

FIG. 13. Three-layer buckling. The lateral correlation of t
outer layer inner peak and the middle layer peak in Fig. 10. T
particles that correspond to peak 3a are denoted by empty circles
and those that correspond to peak 2b by black circles.

FIG. 14. Four-layer buckling. The longitudinal density profi
for H53.74s andr2D* 51.1600~the volume fraction is 0.650!. The
fraction near each peak is the number of particles that corresp
to this peak divided byNlayer.
-
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105. Each density was equilibrated for at least 13107 MD
steps, and then data collected for 43104 MD steps, every
400 time steps.

The initial configuration for each of the simulations w
taken to be a perfect triangular lattice, with the positions
the layers symmetric with respect to the midpoint of the c
(z* 50). In the initial configuration all the particles of eac
layer were assigned the same value ofz* . The lattice points
of the layers were arranged out of registry with respect
one another. For a number of layers equal to or greater t
three we took theABA type structure of the hexagonal clos

e

ds

FIG. 15. Four-layer buckling: four rows are buckled agains
single row. The lateral configuration of the upper outer layer in F
14. The particles that correspond to peak 4a are denoted by empty
circles, and those that correspond to peak 4b by black circles.

FIG. 16. Four-layer buckling: three rows are buckled agai
two rows. The lateral configuration of the upper inner layer in F
14. The particles that correspond to peak 3a are denoted by empty
circles, and those that correspond to peak 3b by black circles.
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666 PRE 61RONEN ZANGI AND STUART A. RICE
packed lattice. All of the simulations results reported in t
paper refer to the reduced temperatureT* 51.00.

III. RESULTS

A. Two-layer buckling transition

We have studied the behavior of two-layer colloidal su
pensions confined between walls with gaps in the ra
1.80s<H<2.40s. The behavior of the longitudinal densit
distribution as a function of wall separation is shown in F
2. The several cases shown describe a path that corresp
to equilibrium between a confined slab and bulk, i.e., a p
along which there is equality of temperature and lateral p
sure between the two phases. WhenH51.90s the longitu-
dinal density distributions of the layers adjacent to each w
are unimodal. AsH increases the longitudinal density distr
bution of each layer becomes bimodal, and the peak
smaller uz* u move continuously towardz* 50. When H
52.40s these peaks merge and the system consists of t
ordered layers with square packing in each layer. An anal
of the amplitudes of the peaks in the longitudinal dens
distributions~Fig. 3! shows that each layer is split intoa and
b components in such a way that two-third of the partic
are displaced towards the walls (1a,2b), while one-third of
the particles are shifted toward the center (1b,2a). An ex-
amination of the in-plane structure of one of the layers~Fig.
4! reveals that thea and b layers are associated with a
ordered phase in which two rows are displaced toward
wall with respect to one row.

How does the structure of the two-layer buckled pha
mediate the 2n→3h conversion? The transformation of th
layers corresponding to the outer peaks~1a and 2b! to
square layers is similar to the way the one layer buck
phase mediates the 1n to 2h transition. An examination of
the particle configuration displayed in Fig. 4 shows that
creasing the distance between the paired rows~correspond-
ing to peak 1a or peak 2b! along the perpendicular betwee
them creates a layer which has half square packing and

FIG. 17. Four-layer buckling. The lateral correlation betwe
peaks 2b ~empty circles! and 3a ~black circles! of Fig. 14.
s

-
e

.
nds
h
s-

ll

at

ee
is
y

s

e

e

d

-

alf

triangular packing. Similarly, an examination of the partic
configuration displayed in Fig. 5, which represents the sup
posed lateral configurations in layers 1b and 2a, shows that
decreasing the distance between the rows along the per
dicular between them creates the same situation where
of the layer has square packing and half has triangular pa
ing. With rearrangement of the triangular packing presen
each layer to square packing the overall effect is then to fo
the 3h structure.

The stability region of the buckled phase increases w
increasingH, and ordered buckled phases were observed
2.00s<H<2.35s. When 1.80s<H<1.90s the buckled
phase is not stable and the longitudinal density distributio
unimodal for each of the layers. The buckled phase co
sponds to the high density region in the phase diagram.
lowest density at each value ofH for which the two layer
ordered buckled phase is stable is given in Table II. Wh
H52.40s the ordered two-layer buckled phase is unsta
with respect to a three-layer slab with body centered cu
~bcc! structure.

An examination of the distribution of interparticle dis
tances for the model system with Marcus-Rice-type inter
tions, for different wall separations and densities that supp
two-layer buckling, reveals that both the intralayer and int
layer particle separations can~i! be all on the soft repulsive
part of the potential curve,~ii ! be all at the minimum of the
attractive well, or~iii ! exhibit coexistence of separations
types~i! and ~ii !.

The buckling transition appears to be universal in t
sense that it does not depend on the type of interpart
potential used. Most of our simulations were executed w
the Marcus-Rice potential, but a few simulations were c
ried out using a modified Marcus-Rice potential with t
attractive well removed; this potential has only soft and h
core repulsions. A similar small set of simulations was c
ried out using the hard sphere potential. All of these pot
tials support ordered buckling of the layers in the simulat
sample.

FIG. 18. Four-layer buckling. The lateral correlation betwe
peaks 4a ~empty circles! and 3b ~black circles! of Fig. 14.
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FIG. 19. The longitudinal density distribu
tions at constantN, A, andT (r2D* 51.2000), for
the four-layer-buckled→5h transition. ~a! H
53.75s, ~b! H53.90s, ~c! H54.05s, and ~d!
H54.20s.
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Figure 6 displays the isotherms of the lateral pressure
function of the one-layer two-dimensional number dens
For H52.30s a van der Waals loop is evident in the ran
1.0500<r2D* <1.0900. The width of the van der Waals loo
decreases asH decreases, and forH<2.10s the lateral pres-
sure isotherm appears to be continuous on the scale o
sampling of the density that we have used in our calcu
tions. However, the difference between the densities of
coexisting buckled and unbuckled phases decreases with
creasingH, and we cannot rule out the possibility that wh
H is small this difference is smaller than the sampling int
val for the density. If so, what appears to be a continu
transition whenH<2.10s remains a weak first order trans
tion. Just this behavior was encountered in our study of
buckling of a single layer whenH51.20s, which value ofH
is close to the critical value below which the buckled pha
is unstable at all densities.

The two-layer buckled phase to 3h transition is also first
order, as can be seen from the lateral pressure isotherm
H52.40s ~Fig. 7!; this isotherm clearly displays a van d
Waals loop for 1.0000<r2D* <1.0800. Examination of the
lateral configurations for systems with densities inside
coexistence region confirms the separation of the two pha
When r2D* <1.0000 the system is in a two-layer-buckle
phase, but the displaced particles are not laterally orde
For densitiesr2D* >1.0800 the system has a 3h structure.
Note that the smaller van der Waals loop in the density ra
0.8600<r2D* <0.9200 corresponds to the melting transitio
The solid close to the melting point is in a triangular lattic
The longitudinal density distribution of each of the layers
this lattice has one peak, with a shoulder corresponding
strong overlap with the displaced peaks of the longitudi
density distribution of the buckled phase.

B. Three-layer buckling transitions

We have studied the behavior of three-layer colloidal s
pensions confined between walls with gaps in the ra
2.82s<H<3.39s. The transformation of a three-laye
buckled phase system to a four-layer system with bcc st
ture, along a path at constantA, N, andT, is shown in Fig. 8.
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The confinement range covered is 3.02s<H<3.30s. As be-
fore, the longitudinal density distribution for each of th
three layers is bimodal. Note that asH increases the inne
peaks~smalleruz* u! of the longitudinal density distributions
of the layers adjacent to the walls move to smaller values
uz* u, while the outer peaks of those distributions move
ward larger values ofuz* u. Simultaneously, the longitudina
density distribution of the inner layer of the three-layer sy
tem splits into two distributions with equal amplitude, an
each of these moves toward larger values ofuz* u as H in-
creases. Eventually, whenH>3.30s, the peaks merge to
form a 4h structure. WhenH53.25s the results of our
simulations show coexistence between a three-layer buc
phase and a 4h phase. The longitudinal density distributio
at this value ofH shows that, in addition to the peaks of th
buckled layers, two additional peaks start to build up arou
uz* u50.4, a location where at higher values ofH ~e.g., H
53.30s! we found the two newly formed layers of 4h struc-
ture. The lateral and transverse pressures as a functionH
are shown in Fig. 9. Both isotherms have a van der Wa

FIG. 20. Five-layer buckling. The longitudinal density distrib
tions forH54.59s andr2D* 51.1600~the volume fraction is 0.662!.
The fraction near each peak is the number of particles that co
sponds to this peak divided byNlayer.
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668 PRE 61RONEN ZANGI AND STUART A. RICE
loop, confirming that the transition occurs in both the late
and normal directions and that the transition is first orde

Figure 10 displays the amplitudes of the peaks in the l
gitudinal density distributions of the layers. The amplitu
ratio of the outer layer distributions show that three-four
of the particles (1a,3b) are displaced toward the walls, an
one-fourth of the particles (1b,3a) are displaced toward
smalleruz* u. The longitudinal density distribution of the cen
tral layer (2a,2b) splits into two equal amplitude distribu
tions. The numbers of particles in the layers associated w

FIG. 21. Five-layer buckling: five rows are buckled agains
single row. The lateral configuration of layer 5 in Fig. 20. T
particles that correspond to peak 5a are denoted by empty circles
and those that correspond to peak 5b by black circles.

FIG. 22. Five-layer buckling: four rows are buckled against t
rows. The lateral configuration of layer 4 in Fig. 20. The partic
that correspond to peak 4a are denoted by empty circles, and tho
that correspond to peak 4b by black circles.
l

-

s

th

each of the peaks in the longitudinal density distributions
such that the combination of adjacent buckled layers to fo
four unbuckled layers yields a 4h structure. This can be see
from the particle configuration in an outer layer~Fig. 11! and
in an inner layer~Fig. 12!. The former clearly shows the
coherent displacement of three rows of particles with resp
to a single row, and the latter clearly shows two rows
particles that are displaced toward largeruz* u and two rows
that are displaced toward smalleruz* u. Examination of the
lateral correlation between the particles corresponding
peaks 2b and 3a in Fig. 13, and the outer layer configuratio
3b, reveals that two-third of the arrangement has a hexa
nal configuration and one-third has a square configurat
Then, the same type of rearrangements can be exploite

FIG. 23. Five-layer buckling: three rows are buckled agai
three rows. The lateral configuration of layer 3 in Fig. 20. T
particles that correspond to peak 3a are denoted by empty circles
and those that correspond to peak 3b by black circles.

FIG. 24. Six-layer buckling. The longitudinal density distribu
tion for H55.58s andr2D* 51.2000~the volume fraction is 0.676!.
The fraction near each peak is the number of particles that co
sponds to this peak divided byNlayer.
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all four layers to convert the three-layer buckled phase t
phase with 4h packing.

C. Four-layer buckling transitions

The amplitudes of the peaks in the longitudinal dens
distributions for the buckled phase of four layers~H
53.74s andr2D* 51.1600! are shown in Fig. 14. The buck
ling transition in this system shows the same trend as tha
systems with smaller numbers of layers. Specifically, the
tribution of particles in the outer layers splits such that fo
fifths of the particles move toward the walls and one-fou
of the particles moves toward smalleruz* u, while the num-
bers of particles in the two middle layers each split in t
ratios 3

5 and 2
5. Then, by combining pairs of density distribu

tions, specifically, 1b and 2a, 2b and 3a, and 3b and 4a,
we obtain five layers with the same number of particles. T
lateral structure of the upper outer layer~Fig. 15! shows that
four rows of particles are buckled against a single row, a
the lateral structure of the upper middle layer~Fig. 16! shows
that three rows of particles are buckled with respect to t
rows. The lateral correlations between the particles, co
sponding to peaks 2b and 3a, and 3b and 4a, are shown in
Figs. 17 and 18, respectively.

The behavior of the longitudinal density distribution
the buckled phase along a path at constantA, N, andT, for
four different values ofH in the range 3.75s<H<4.20s, is
shown in Fig. 19. ForH54.20s we find that there is coex
istence between a four-layer buckled phase and a 5h phase.

D. Five- and six-layer buckling transitions

The amplitudes of the peaks in the longitudinal dens
distributions for the buckled phase of five layers~H
54.59s and r2D* 51.1600! are shown in Fig. 20. The par
ticles in the layers that are labeled 1 and 5 split in ratios
5
6 (1a,5b) and 1

6 (1b,5a), those that are labeled 2 and 4 sp
in ratios of 4

6 (2a,4b) and 2
6 (2b,4a), and those in the middle

layer ~labeled 3! split in ratios of 3
6 and 3

6. The lateral struc-
ture of layer 5 (5a,5b) is shown in Fig. 21, that of layer 4
(4a,4b) is shown in Fig. 22, and that of layer 3 (3a,3b) is
shown in Fig. 23. The correlations of the particles that c
respond to the split peaks to be merged show behavior s
lar to that observed for the smaller numbers of layers.

The longitudinal density profile for six layer buckling
shown in Fig. 24 forH55.58 andr2D* 51.2000. The layers
that are close to the walls, 1 and 6, split in ratios of6

7 and1
7 .

Layers 2 and 5 split in ratios of57 and 2
7, and layers 3 and 4

split in ratios of4
7 and 3

7. As before, merging adjacent densi
distributions from different layers yields a phase with sev
layers in which each layer has the same number of partic

IV. DISCUSSION

The results of the simulations discussed in Sec. III ad
the following generalization for then-layer buckling transi-
tion: the longitudinal density distribution of each layer b
comes bimodal with ratios of the particle populations giv
by
a

y

in
-

-

e

d

o
e-

y

f

-
i-

n
s.

it

S n

n11D S 1

n11D ,S n21

n11D S 2

n11D ,...,

3S 2

n11D S n21

n11D ,S 1

n11D S n

n11D . ~4.1!

In Eq. ~4.1!, the ratio terms are ordered such that the leftm
term corresponds to the layer that is closest to one of
walls and the rightmost term to the layer that is closest to
other wall. There aren ratio terms in Eq.~4.1!, correspond-
ing to then layers, and these terms are symmetric with
spect to the midpoint of the set. This buckled phase medi
the structural conversionnn→(n11)h. The transition
from ann-buckled phase to an (n11)h phase occurs when
adjacent peaks of the longitudinal density distributions
different layers combine to form (n11) layers with the same
in-plane density. For a process at constantN andA, the in-
plane density of a layer in the (n11)h phase is smaller by
factor of n/(n11) than what it was in thenn phase. The
lateral structure of each layer displaysl out rows of particles
that are displaced toward largeruz* u and l in5n112 l out
rows of particles which are displaced toward smalleruz* u,
where l out and l in are the values of the numerators of th
ratios given in Eq.~4.1!.

Obviously the regularity of the structure of the sequen
displayed in Eq.~4.1! cannot persist forn indefinitely large.
As the number of layers increases the range ofH in which
the buckled phase is stable decreases, and that range ev
ally becomes equal to or less than the amplitude of out
plane thermal motion. Then the buckled phase becomes
stable with respect to a phase consisting of parallel plane
particles. This crossover resembles the situation that pert
for a one-layer system. In that case, when the spacing
tween the walls that confine it become smaller than so
critical value, buckling of the one-layer system becomes
stable.

In the 1n→2h conversion through the one-layer buckle
phase, a simple in-plane perpendicular reduction of the se
ration of the buckled rows is sufficient to convert the tria
gular packing of the particles to a square packing. F
2n→3h conversion via the two-layer buckled phase, t
in-plane perpendicular reduction of the separation of
buckled rows converts half of the configuration to a triang
lar array and half to a square array, so another rearrangem
between half of the rows must take place to complete
phase transition. For the conversion 3n→4h, the same pro-
cess leads to two-thirds of the configuration in a triangu
array. Indeed, as the number of layers increases more
rangements are required to complete the phase transitio
is possible that the character of this rearrangement is po
tial dependent, as we found for the 2n→2h transition, and
that the phase transition can be either first order or cont
ous with intermediate states that are associated with
buckled phases.
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