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Phase transitions in a quasi-two-dimensional system

Ronen Zangi and Stuart A. Rice
Department of Chemistry and The James Franck Institute, The University of Chicago, Chicago, Illinois 60637

~Received 21 May 1998!

We report the results of molecular dynamics simulations of a quasi-two-dimensional system designed to
mimic the quasi-two-dimensional colloid suspensions studied by Marcus and Rice@Phys. Rev. E55, 637
~1997!#. The simulations duplicate all of the important qualitative findings of Marcus and Rice, in particular the
occurrence of first order liquid-to-hexatic and hexatic-to-solid transitions. At higher densities this system also
exhibits an isostructural solid-to-solid transition and a buckling transition, both of which are continuous. We
find that the dislocation pair, free dislocation, and free disclination concentrations do not satisfy the predictions
of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. Our results cast light on the role of the out of plane
motion in determining the global character of the phase diagram of a quasi-two-dimensional system, and they
require reconsideration of the suggestion by Bladon and Frenkel@Phys. Rev. Lett.74, 2519 ~1995!# of the
character of the driving force for the first order liquid-to-hexatic and hexatic-to-solid transitions.
@S1063-651X~98!02612-9#

PACS number~s!: 64.70.Dv
e
l d
m
e

n
d
th
he
lim
st
na
n

-
A

th
la

th

ng
n
e

s

to
bo

an
u
ra
ng
tz

lid
o

ion
lids

first
al
ith

ori-
n is
he
e to
ta-
ion
it
d is
lt-

a-
ary

n
gy
ar-

se
ich
rd

the
kel
hat
he
olid
nce
ses
n-
un-
the

lue
I. INTRODUCTION

It is now well understood that the character and degre
ordering present in a system is dependent on its spatia
mensionality. Indeed, in one- and two-dimensional syste
fluctuations can completely destroy long range order of c
tain types.

The nature of the decay of translational and orientatio
order in a condensed phase are conveniently describe
follows. In a three-dimensional system the amplitude of
envelope of the density-density correlation function of t
ordered solid phase has a nonzero constant value in the
of infinite separation; this behavior defines the characteri
feature of long range positional order. In a two-dimensio
system the envelope of the density-density correlation fu
tion of the solid phase decays to zero algebraically~i.e., as
r 2n! in the limit of infinite separation, which behavior de
fines the characteristic feature of quasi-long-range order.
guments for the lack of long range translational order in
two-dimensional solid were first presented in Refs.@1#, @2–
4#, and @5, 6#, where it was shown that long waveleng
phonon excitations were sufficient to destroy the trans
tional symmetry of the solid in the limitr→`; a rigorous
proof of this behavior was later presented by Mermin for
case of inverse power potentialsu(r )5«(s/r )m, with m
.2 @7#. Mermin also pointed out that the absence of lo
range translational order in a two-dimensional solid does
preclude the existence of long range orientational ord
characterized by a persistent correlation in the orientation
the local crystallographic axes in the limitr→`. We will
refer to the long range order in the orientations of the vec
that connect the centers of nearest neighbor particles as
orientation order.

One of the consequences of the loss of long range tr
lational order in a two-dimensional solid, first pointed o
about 20 years ago, is that the character of the melting t
sition can be fundamentally different from that of the melti
transition in three dimensions. According to the Kosterli
Thouless-Halperin-Nelson-Young~KTHNY ! theory @8–12#,
PRE 581063-651X/98/58~6!/7529~16!/$15.00
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which is based on a description of the two-dimensional so
as a deformable elastic medium with inclusion of the tw
classes of point topological defects with smallest excitat
energy to mediate structural changes, two-dimensional so
melt via sequential continuous phase transitions. The
transition is from the solid with quasi-long-range position
order and long range bond orientation order to a phase w
short range positional order and quasi-long-range bond
entation order, the so called hexatic phase. This transitio
driven by the dissociation of bound dislocation pairs in t
solid. The second transition transforms the hexatic phas
the liquid phase, in which both positional and bond orien
tion orders have short range; it is driven by the dissociat
of individual dislocations to form disclinations. Although
is currently preferred, the transition sequence describe
not the only possible mechanism for two-dimensional me
ing. For example, it is in principle possible for the disloc
tion unbinding transition to be preempted by grain bound
induced melting, as suggested by Chui@13#. We note that the
KTHNY theory of melting in two dimensions is not based o
any particular choice of intermolecular potential ener
function; it remains valid for any system which can be ch
acterized as a deformable elastic medium.

However, the results of recent simulations of the pha
diagram of a two-dimensional assembly of particles, wh
interact via a pairwise additive potential consisting of a ha
core repulsion and a very narrow square well attraction~or a
very narrow step repulsion! @14#, imply that the mechanism
of melting in two dimensions can depend on the nature of
intermolecular potential energy function. Bladon and Fren
found, for the potential energy function described above, t
when the width of the attractive well is less than 6% of t
hard disc diameter the system supports two ordered s
phases with the same packing symmetry. The coexiste
region of the first order transition between these solid pha
ends at a critical point, near which density fluctuations re
der the solid phases unstable with respect to dislocation
binding, and the system supports a hexatic phase. For
case when the square well width is close to the limiting va
7529 © 1998 The American Physical Society
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7530 PRE 58RONEN ZANGI AND STUART A. RICE
for which the low density solid phase becomes unstable,
hexatic region can extend to the melting line. When t
occurs, the liquid-to-hexatic transition is predicted to be fi
order while the hexatic-to-solid transition may be either fi
or second order. An analytic basis for these results was
vided by Chou and Nelson@15#, who incorporated into the
KTHNY theory an explicit solid-to-solid transition. Thi
analysis, which assumes that the elastic energy of the sy
includes a term descriptive of the strain arising from t
change in density associated with an isostructural solid
solid transition, is able to account for the essential feature
the phase diagram found by Bladon and Frenkel. Howe
the Chou-Nelson analysis does not provide a microsco
explanation for the observed phase diagram because i
sumes,a priori, the existence of the isostructural solid-t
solid transition, and incorporates its effects into the syst
free energy density.

Experimental testing of the KTHNY predictions concer
ing the character of two-dimensional melting has been l
ited by the difficulty of preparing systems which are acce
able representatives of the theoretical model@16#. Typical
representatives of two-dimensional systems are monola
supported on a substrate. Nelson and Halperin@9# and Young
@11# showed that a weak incommensurate substrate pote
only slightly modifies the character of the predicted solid-
hexatic transition. Among the interesting changes known
be induced by the potential of an ordered substrate are
range bond orientation order in the hexatic phase, an
washing out of the dislocation→disclination unbinding tran-
sition when the substrate has sixfold symmetry. Also, if
two-dimensional solid monolayer has a preferred orienta
with respect to the supporting substrate, and that orienta
is not along a substrate symmetry axis, the melting transi
is expected to be Ising-like, corresponding to the two equi
lent ways of orienting the two-dimensional solid with respe
to a substrate symmetry axis. Notwithstanding these ex
sions of the theory to include substrate effects, the neces
and sufficient conditions for a real quasi-two-dimensio
system to behave as if it were truly two dimensional rem
to be established. It is certainly necessary, but not suffici
that the range of in-plane correlations greatly exceed
range of out-of-plane correlations, and that the interacti
between the system and its supporting substrate furnish
a weak perturbation to the properties of the system. In p
ticular, we believe that the extent to which a realization o
two-dimensional system deviates from true two-dimensio
character by exploiting some out-of-plane motion can pla
crucial role in the mechanism of the melting transition.

With that caveat in mind, we note that experimental stu
ies of the melting of ordered electrons supported on the
face of liquid He@17–19#, and of the melting of an ordere
array of charged polystyrene spheres between two pl
@20–23#, are consistent with many of the predictions of t
KTHNY theory, but some deviations are observed in in
vidual studies@24#. A few other experimental studies giv
results sometimes in accord and sometimes not in ac
with the KTHNY theory. Recent experimental studies of
quasi-two-dimensional dense assembly of uncharged s
cally stabilized polymethylmetacrylate spheres between
plates @25#, with an interparticle interaction of the form
shown in Fig. 1~which we call the Marcus-Rice potential!,
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have confirmed the inferences of Bladon and Frenkel,
that melting in that system involves sequential first ord
solid-to-hexatic and hexatic-to-liquid transitions.

Theoretical tests of the KTHNY theory predictions al
are abundant@26,27#. An early computer simulation study o
two-dimensional melting in a system with Coulomb intera
tions is consistent with the predictions of the KTHNY theo
@28,29#, as is a more recent study of a two-dimensional c
loid system with Yukawa interactions@30#. The most recent
and most extensive computer simulation of the melting o
two-dimensional system of particles which have an interp
ticle repulsive potential of ther 212 form concludes that there
are continuous transitions between the solid and hex
phases and hexatic and liquid phases, but that the den
range in which the hexatic phase is stable is very small@31#.
Earlier, less definitive, computer simulations of the tw
dimensional hard disc system~and of similar systems with
short range repulsive interactions! lead to the conclusion tha
two dimensional melting is a first order transition.

This paper reports the results of extensive computer si
lations of a model designed to mimic the system studied
Marcus and Rice@25#. In this model the interaction betwee
spherical particles is represented by a potential like that
ferred by Marcus and Rice~see Fig. 1!; it has a steeply
repulsive core atr 5s, a soft repulsion in the regions<r

FIG. 1. Marcus-Rice potential as a function of the reduced
terparticle distance~top figure!, and the external potential as a fun
tion of the reduced center of mass coordinate along the vertical
~z axis! measured from the center of the cell~bottom figure!. In both
cases, the energy is in units of«.
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<1.04s, and a weak attraction in the region 1.04s<r
<1.06s. The spheres are constrained to form a quasi-tw
dimensional assembly by a continuous potential acting in
z direction, representing the influence of the cell walls. T
potential confines the center of a sphere to be, effectiv
within 60.1s of the center plane of the cell. The results
these simulations duplicate all of the important qualitat
findings of Marcus and Rice, in particular the occurrence
first order liquid-to-hexatic and hexatic-to-solid phase tran
tions. We also find that at higher density there is an isostr
tural solid-to-solid transition, followed by a buckling trans
tion. However, unlike the results of the two-dimension
simulations of Bladon and Frenkel, or the analysis of Ch
and Nelson, this isostructural transition is continuous, a
also the buckling transition. We also find that the dislocat
pair, free dislocation and free disclination concentrations
not satisfy the KTHNY predictions. Our results cast light
the role of out of plane motion in determining the glob
character of the phase diagram of a quasi-two-dimensio
system, and they require reconsideration of the suggestio
Bladon and Frenkel of the character of the driving force
the first order liquid-to-hexatic and hexatic-to-solid tran
tions.
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II. MODEL SYSTEM AND COMPUTATIONAL DETAILS

The model system studied had 2016 particles containe
a rectangular box with side lengths in the ratiox:y
57:(8)/2). We find it convenient to use the reduced va
ables r * 5r /s, z* 5z/s, T* 5kBT/«, r* 5rs2, and m
51, with s the diameter of the particle,« the depth of the
attractive potential well,r the number density, andm the
mass of the particle. Although the particles can move in
z direction under the influence of az dependent one body
potential~see below!, we choose to characterize the state
the system with the two dimensional number dens
r5N/A, whereA is the area of the simulation cell in thexy
plane, since the height of the cell,H, is constant in all of the
simulations presented in this paper. Periodic boundary c
ditions were imposed on the simulation cell in thex and y
directions, but not in thez direction. The same number o
particles was present in the simulation cell for all of t
densities studied. To study the properties of the system w
different particle densities, we changed the area of the si
lation cell in thexy plane.

The interparticle potential for the model system,
u~r * !52« expF2S r * 2wc*

ww* D 4G12310219«S r * 2
1

2D 264

11.2« expF2S r * 20.96

0.074 D 8G , ~2.1!
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was designed to have the features inferred by Marcus
Rice ~see Fig. 1!. The first term in Eq.~2.1! represents the
attraction between colloid particles when there is incipi
overlap between the stabilizing brushes on their surfaces
simplicity we have taken the functional form of this attra
tion to be an inverse even power exponent with depth«
51.0kBT and widthww/s5ww* 50.006, centered atwc*
51.05. The second term in Eq.~2.1! is the core-core repul
sion, which is the dominant contribution tou(r * ) when r *
<1; the functional form chosen is very nearly a hard co
repulsion but has continuous derivatives. The last term in
~2.1! is an interpolating soft repulsion, representing the
tropy cost associated with interpenetration of the stabiliz
brushes attached to the surfaces of the colloid particle
plays the role of a spline function between the aforem
tioned attractive and repulsive terms~see Fig. 1!. The par-
ticles in the model system were also subjected to a one b
external potential in thez direction. Consequently, all of th
thermodynamic properties of the model system are functi
of the strength of this external potential. However, the sh
of the potential,

uext~z* !5D«~z* !z, ~2.2!

is such as to confine the system to form a slab with w
specified heightH, so we can represent its thermodynam
properties with the variablesN, T, A, andH in place ofN, T,
V, and the strength of the external potential. In Eq.~2.2!, z*
is the distance from the center of the cell to the center
mass of the particle andz524 andD5231024; this poten-
nd
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tial confines the particles as if they were in a cell with
effective height of 1.2s. As is convenient for the purpose a
hand, we will sometimes describe the simulation results
ing reduced units and sometimes using absolute units.

The molecular dynamics~MD! simulations were carried
out using the ‘‘velocity Verlet’’ algorithm@32#, and the Ver-
let neighbor list method for the calculation of the potent
energy@33,34#. The distance at which the potential was c
off was 1.5s, and the neighbor list cut off was 2.4 times th
in plane projected average spacing of the particles. The n
for updating of the neighbor list was checked at every ti
step. The average time step used was, in reduced unit
31024; the associated rms fluctuation in total energy did n
exceed one part in 105.

The initial configuration for the simulations was taken
be a perfect triangular lattice with all particles located in t
planez50. The fluid and hexatic phases of the system w
equilibrated for 63106 MD steps, and then data collected fo
53105 MD steps, every 100 time steps. The solid phases
the system were equilibrated for a longer time; for all den
ties greater thanr* 51.130 the system was equilibrated fo
at least 103106 MD steps. We checked the achievement
equilibrium by the lack of variation in time of the pressur
energy, and temperature, and of the pair and bond orienta
correlation functions.

Since the linear momentum in thez direction is not con-
served in our model system~because there is no period
boundary condition in this degree of freedom!, the tempera-
ture is related to the kinetic energyK and the total number o
degrees of freedom, 3N22, by
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T5
2K

3N22
. ~2.3!

The required temperature was created by multiplication
the velocities by an appropriate constant.

The lateral and transverse pressures,pl and pt , respec-
tively, were calculated from the lateral and transverse in
nal virialsWl andWt , where

Wl52
1

2 (
i 51

N

(
j . i

N xi j
2 1yi j

2

r i j

]u~r !

]r U
r 5r i j

, ~2.4a!

Wt52
1

2 (
i 51

N

(
j . i

N zi j
2

r i j

]u~r !

]r U
r 5r i j

. ~2.4b!

We find

pl5
NkBT1^Wl&

V
, ~2.5a!

pt5
NkBT12^Wt&

V8
, ~2.5b!

whereV85Ah andH5s1h.
Following Landau, a transition between phases is con

niently characterized by an order parameter that is zero
one of the phases~usually taken to be the high temperatu
phase! and nonzero in the other phase@6#. The order param-
eter can be defined with respect to the entire system~global
order parameter!, or it can be defined to take into accou
only the local environment of a particle~e.g., the neares
neighbor distribution!. An abrupt change in the rate o
change with density of the global order parameter is a sig
ture of the occurrence of a first order phase transition; in
coexistence region the order parameter is a linear functio
the density, a dependence which is equivalent to the le
rule. The behavior of the distribution of local order para
eters provides information concerning the nature of
change in structure associated with the phase transition.

The local order parameter descriptive of orientatio
symmetry in a phase is defined by the projection of the b
orientation onto a local average over the orientations of
bonds to the nearest neighbors:

w6i5
1

ni
(
j 51

ni

C6i* C6 j , ~2.6!

C6i5
1

ni
(
j 51

ni

ei6u i j . ~2.7!

In Eqs.~2.6! and~2.7!, the sums are taken over theni nearest
neighbors to particlei, as determined by a two-dimension
Voronoi polygon construction@35,34#. We denote byrW i j the
vector separation of particlesi and j, and byu i j the angle
betweenrW i j and an arbitrary fixed axis. The global transl
tional order parameter is defined to be the sum of the Fou
components of the density,
f
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FT5
1

N (
i 51

N

eiGW •rW i, ~2.8a!

whereGW is a reciprocal lattice vector of the triangular two
dimensional lattice. The corresponding global orientatio
order parameter is defined by

F65
1

N (
i 51

N

C6i . ~2.8b!

The correlation lengths associated with these order par
eters are derived from the decays of the envelopes of the
distribution function

g~r !5
V

N2 K (
i 51

N

(
j Þ i

N

d~rW2rW i j !L , ~2.9a!

and the bond orientation function

G6~r !5^C6* ~0!C6~r !&, ~2.9b!

where all the vector and scalar distances are defined to
projections onto thexy plane.

The susceptibilities associated with the translational a
orientational order parameters are

xT5
N

T
@^FT

2&2^FT&2#, ~2.10a!

and

x65
N

T
@^F6

2&2^F6&
2#. ~2.10b!

The divergence of these susceptibilities is a signature of
instability of the system, usually interpreted as a change
phase. We note that it has been argued that in a t
dimensional systemxT can diverge without an instability
occurring@36,37#.

As is shown in the Appendix, the inherent inhomogene
of our model system results in different sets of thermod
namic susceptibilities for the lateral and transverse s
spaces. The heat capacity per particle at constantA andH is
equivalent to the heat capacity at constant volume for a
mogenuous system. For the microcanonical ensemble, L
owitz, Percus, and Verlet showed@38# that the fluctuations in
the kinetic energy~or in the potential energy! are related to
cA,H by

cA,H5
9NkB

3T2

6NkB
2T224^dK2&

. ~2.11!

The lateral and transverse thermal pressure coeffici
were calculated from the cross correlation between the fl
tuations in the potential energy and the corresponding viri

g l5
1

V S NkB1
2cA,H^dUdWl&

3kB
2T2 D , ~2.12a!
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g t5
1

V8 S NkB1
4cA,H^dUdWt&

3kB
2T2 D . ~2.12b!

Chou and Nelson showed, from an analytic extension
the KTHNY model, that a two-dimensional isostructur
solid-solid transition can involve a rotation of the orientati
of one solid phase with respect to the other. We checked
the existence of such a rotation by examining the orientati
of the phases with respect to a fixed axis of the Voroni po
gons~mostly hexagons! in the solid. The distribution of ori-
entations of the Voroni polygons was represented in term
the angleq i defined by

tan~q i !5S 1

ni
D (

j

ni

sin~6u i j !

(
j

ni

cos~6u i j !

. ~2.13!

III. RESULTS OF THE SIMULATIONS

All of the simulations reported in this paper refer to
quasi-two-dimensional system with reduced temperatureT*
51, and a sample thickness determined by the potential
played in Eq.~2.2!. We will report the results of calculation
of the properties of the model system as a function of te
perature and sample thickness in another paper.

A. Liquid-to-hexatic and hexatic-to-solid transitions

We consider first the results of simulations using the
tential displayed in Fig. 1. Figure 2 displays, for the isothe
T* 51, the lateral pressure and the transverse pressure
function of density for the range 0.700<r* <1.000. The
weak van der Waals loop evident in the lateral pressure
therm is strong evidence of a coexistence region of a
order transition. This inference is supported by the obse
tion that neither the constant volume heat capacitycA,H ~Fig.
3!, nor the lateral or transverse thermal pressure coeffic
~Fig. 4!, is singular in the density region where the van d
Waals loop occurs. On the other hand, there is no van
Waals loop in the transverse pressure isotherm, indica

FIG. 2. Lateral pressure~empty circles! and transverse pressur
~filled circles! isotherms (T* 51) as a function of the 2D densit
for the full Marcus-Rice potential.
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that the transition takes place just in thexy plane. In fact, we
find that in the density range 0.850<r* <0.900 there are
two first order transitions, namely, liquid to hexatic an
hexatic to solid. The identities of the coexisting phases w
ascertained from their respective pair correlation and b
orientation correlation functionsg(r * ) and G6(r * ). These
functions are displayed in Figs. 5 and 6, respectively,
three sample densities that span the coexistence reg
namelyr* 50.900, 0.870, and 0.850. At the high end of t
density range bothg(r * ) andG6(r * ) display behavior char-
acteristic of an ordered solid phase, and at the low end of
density range they both display behavior characteristic o
liquid phase. In the former case the envelope ofg(r * ) de-
cays algebraically asr *→` and the envelope ofG6(r * )
does not decay asr *→`, while in the latter case the enve
lope of g(r * ) andG6(r * ) decays exponentially asr *→`.
When r* 50.870, in the middle of the coexistence regio
the envelope ofg(r * ) decays exponentially asr *→`, with
a falloff that is slower than whenr* 50.850, and the enve
lope of G6(r * ) decays algebraically, with a power law ex
ponent of20.30, to a nonzero value asr *→`. As shown in
Fig. 7, the global translational order parameterFT decays to
zero nearr* 50.880, while the global orientational orde

FIG. 3. Heat capacity at constantA andH as a function of the
2D density.

FIG. 4. Lateral~empty circles! and transverse~filled circles!
thermal pressure coefficients as a function of the 2D density.
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parameterF6 decays to zero nearr* 50.850. Given that the
corresponding susceptibilities exhibit singular behavior
those densities~Fig. 8!, we infer that between the solid an
liquid phases there is another phase, one which has orie
tional order but no translational order.

The density dependence of the distribution of local orie
tational order parameters for the liquid phase in the ra
0.705<r* <0.805 is shown in Fig. 9~a!, while the density
dependence of the distribution of local orientational ord
parameters for the solid phase in the ran
0.945<r* <0.995 is shown in Fig. 9~b!. In both the liquid
and solid phases the distribution of the local orientatio
order parameter is unimodal. In the liquid phase that dis
bution is asymmetric, with a peak at zero for all densiti

FIG. 5. The pair correlation function of the model system w
2D densities~from top to bottom! 0.850, 0.870, and 0.900.
t

ta-

-
e

r
e

l
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;

the asymmetry of the distribution decreases as the den
decreases. Since the local orientational order paramete
defined with respect to the angular distribution of bonds
the nearest neighbors of a particle, we expect it to be zer
the liquid phase and nonzero in the hexatic phase. In
solid phase the local orientational order parameter distri
tion peaks at a value close to 1 at very high density and
expected for a homogeneous solid, the peak of the distr
tion shifts continuously to smaller values as the density
creases. The distribution of the local orientational order
rameter in the solid phase is markedly less asymmetric t
in the liquid phase.

FIG. 6. The bond orientation correlation function of the mod
system with 2D densities~from top to bottom! 0.850, 0.870, and
0.900.
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The density dependence of the distribution of local orie
tational order parameters for the coexistence reg
0.850<r* <0.900 is shown in Fig. 10. When 0.890<r*
<0.900, this distribution is unimodal with a peak at som
nonzero value of the order parameter. In contrast, w
0.850<r* <0.880 this distribution is bimodal with one pea
located atw650.

The KTHNY theory interprets the mechanism of the p
dicted two stage continuous melting to involve dissociat
of dislocation pairs to form free dislocations followed by t
dissociation of free dislocations to form disclinations. In F
11~a! we show the fractions of particles which are five-, s
and seven-coordinated as a function of density, and in
11~b! the fractions of dislocation pairs, free dislocations, a
free disclinations as a function of density. Dislocation pa
first appear in our simulation sample at a density just ab
the high density end of the van der Waals loop, and f
dislocations and free disclinations start to appear just ins
the high density end of the van der Waals loop. We do
find any region in which there are free dislocations but
free disclinations, in contrast with the behavior predicted
the KTHNY description of the hexatic phase. The densit

FIG. 7. The global translational~filled circles! and orientation
~empty triangles! order parameters as a function of the 2D dens

FIG. 8. The susceptibility of the translational~filled circles! and
orientation~empty triangles! order parameters as a function of th
2D density.
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of the liquid, hexatic, and solid phases identified above,
the system with the full Marcus-Rice potential, are listed
Table I.

The results of the Bladon-Frenkel analysis of the ph
diagram of a two-dimensional assembly of disks which
teract via a pairwise additive potential consisting of a ha
core repulsion and a very narrow square well attraction~or a

.

FIG. 9. The local orientation order parameter distribution
several 2D densities:~a! 0.705–0.805, representing the liqui
phase.~b! 0.945–0.995, representing the solid phase.

FIG. 10. The local orientation order parameter distribution
side the van der Waals loop, for the 2D densities 0.850–0.900
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very narrow step repulsion! are very sensitive to the width o
the attractive well~or the step repulsion!, because the system
supports an isostructural solid-solid phase transition o
when that width is small relative to the disk diameter.
examine the influence of the attractive well of the Marcu
Rice potential on the phase diagram of the quasi-tw
dimensional system, we carried out simulations in which t
part of the interparticle potential is deleted. The result
potential is everywhere repulsive and, for the region 1
<r * <1.04, rather soft. Consequently, it is not obvious th
the system with modified Marcus-Rice interactions can s
port an isostructural solid-solid transition and a hexa
phase.

FIG. 11. ~a! The fraction of particles which has 5~empty
squares!, 6 ~empty circles!, and 7 ~filled circles! as coordination
numbers as a function of the 2D density.~b! Fraction of dislocation
pairs~filled circles!, free dislocations~empty squares!, and free dis-
clinations~empty circles! as a function of the 2D density.

TABLE I. The phase boundaries for the Marcus-Rice poten
and for the modified Marcus-Rice potential, forT* 51.0 andH
51.2s.

Phase

2D density

Marcus-Rice potential Modified Marcus-Rice potenti

Solid 0.900 0.890
Hexatic 0.880–0.870 0.870–0.860
Liquid 0.850 0.840
ly

-
-
t

g
0
t
-

c

We show in Fig. 12, for theT* 51.0 isotherm, the latera
and transverse pressures versus density for the range 0
<r* <1.000. As in the system with the full Marcus-Ric
potential, there is a van der Waals loop in the lateral press
~while the transverse pressure is continuous!, indicating that
the system supports a first order phase transition that oc
in the plane. Note that in the absence of the attractive w
the van der Waals loop is shifted to the slightly lower dens
range 0.840<r* <0.890. In this system both the consta
volume heat capacitycA,H ~Fig. 13! and the thermal latera
and transverse pressure coefficients~Fig. 14! have a sharp
peak atr* 51.150, but nowhere else in the density ran
studied. As in the system with the full Marcus-Rice potenti
the global translational and orientational order parame
become zero at different densities~Fig. 15!, at which their
corresponding susceptibilities are singular~Fig. 16!. The
densities of the liquid, hexatic, and solid phases in the s
tem with the modified Marcus-Rice potential are listed
Table I.

B. Transitions in the solid phase:
Small lattice distortions and buckling

We now examine the distribution of lattice spacings~the
analysis is in three dimensions! for the density range

FIG. 12. Lateral pressure~empty circles! and transverse pressur
~filled circles! isotherms as a function of the 2D density for th
modified Marcus-Rice potential.

FIG. 13. Heat capacity at constantA andH as a function of the
2D density for the modified Marcus-Rice potential.

l
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1.050<r* <1.140 ~Fig. 17! and the distributions of lattice
spacings in the density ranges 0.945<r* <1.040@Fig. 18~a!#
and 1.150<r* <1.180 @Fig. 18~b!#. The latter two distribu-
tions are unimodal, whereas that for 1.050<r* <1.140 is
bimodal. We find that the distribution of the local orient
tional order parameter in the coexistence region is unimo
and very narrow, with a peak value of 1.00, and that
global translational and orientational order parameters in
coexistence region have values in the ranges 0.983–0
and 0.990–0.996, respectively. Analysis of the distribut
of the absolute orientations of the Voronoi polygons~dis-
played in Fig. 19! reveals that it is very narrow and unimo
dal. We infer that the structural transition we have obser
affects only the magnitude of the nearest neighbor separa
i.e., the two phases have the same orientation with respe
a space fixed axis. In one phase the value of the nea
neighbor separation is centered at the minimum of
Marcus-Rice potential, whereas in the other phase the ne
neighbor separation varies in the range 1.010<r * <1.035 as
the two-dimensional density increases. Note that 1.010<r *
<1.035 is just the range ofr * which corresponds to the
slowly varying part of the repulsive component of th
Marcus-Rice potential.

FIG. 14. Lateral~empty circles! and transverse~filled circles!
thermal pressure coefficients as a function of the 2D density for
modified Marcus-Rice potential.

FIG. 15. The global translational~filled circles! and orienta-
tional ~empty triangles! order parameters as a function of the 2
density for the modified Marcus-Rice potential.
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Although the preceding observations suggest the oc
rence of a first order isostructural phase transition betw
two solid phases, each of which has triangular lattice sy
metry, a different picture emerges when we examine the c
figurations of the two ‘‘phases’’ projected on thexy plane
~Fig. 20!. This projection clearly shows that the long an
short lattice spacings are not ordered, and that no phase s
ration has occurred. To verify that the configuration d
played is not that for a system trapped in a local minimu
we have carried out a simulation forr* 51.090 starting with
a configuration that has separated phases. Specifically, in
initial configuration the ‘‘high’’ and ‘‘low density’’ solid
phases occupied different regions, with the particles pla
at a heightz that corresponds to the maximum of the heig
distribution at r* 51.090 with an ordered linear buckle
structure. The simulations were carried out twice, once w
time step equal to 531024 and once with time step equal t
131025. In both cases the final configuration after 1
3106 cycles was a single phase with a disordered distri

e
FIG. 16. The susceptibility of the translational~filled circles!

and orientational~empty triangles! order parameters as a function o
the 2D density for the modified Marcus-Rice potential.

FIG. 17. The lattice spacing distribution for 2D densities 1.05
1.140 ~shown with equal intervals!. r* 51.050 is the distribution
that has the dominant peak at the lattice spacing that correspon
the minimum in the Marcus-Rice potential~1.05!, while r*
51.140 has the major peak around a lattice spacing of 1.01.
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7538 PRE 58RONEN ZANGI AND STUART A. RICE
tion of the two different lattice spacings. Indeed, this conc
sion is consistent with Landau theory~notwithstanding the
questionable applicability of that theory to two dimension
systems! and the character of the isotherms for our mo
system. Landau theory predicts that coexisting phases
the same symmetry are connected by a first order transi
hence there should be a plateau in the pressure-density

FIG. 18. The lattice spacing distribution for 2D densities:~a!
0.945–1.040.~b! 1.150~empty circles!, 1.160~filled squares!, 1.170
~empty squares!, and 1.180~filled circles!.

FIG. 19. The orientation of the Voronoi polygons for 2D den
ties 1.050–1.140, as defined in Eq.~2.13!.
-

l
l

ith
n;
so-

therm for the coexistence region. Our simulation results
veal a plateau in neither the lateral nor transverse press
density isotherms in the range for which the behav
described above exists~see Fig. 21!. Moreover, we find that
the constant volume heat capacityCA,H ~Fig. 3! and the lat-
eral thermal pressure coefficients~Fig. 4! of the model sys-
tem with the full Marcus-Rice potential exhibit singularitie
nearr* 51.050, and that the energy per particle distributi
is unimodal~Fig. 22! for the density range associated wi
the transition. Taken together, these observations sugges
occurrence of a continuous phase transition between
identified solid phases.

Given that there are two configurations of the partic
with different average nearest neighbor spacings, why
there not a separation of the assembly of particles into
distinct phases? We attempt to answer this question by
ing that, taking advantage of the short range of the inter
tion between particles, the potential energy of our mo
system can be represented in the form

U5 1
2 (

i 51

N

(
j

ni

u~r i j !1(
i 51

N

uext~zi !, ~3.1!

where the second sum of the first term goes over only
nearest neighbors of particlei. Since the particles in the sys
tem form a single sheet the nearest neighbor connectivit
two dimensional, even if that sheet crumples. Then, fo
specified distribution of number of nearest neighbor sp
ings, the potential energy of the model system is the sa
whether the particles are partitioned into aggregates wh
are homogeneous with respect to nearest neighbor spacin
are thoroughly mixed with respect to nearest neighbor sp
ing. Accordingly, with the stated constraint, the spatial
rangement of nearest neighbor separations will be de
mined by maximizing the entropy of that arrangement.

FIG. 20. Lateral arrangement of the short~gray lines! and long
~black lines! lattice spacings for the 2D density 1.090.
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When we carried out the simulation without the attract
part of the interparticle potential, the distribution of the la
tice spacing was unimodal for all the densities that cor
spond to the solid phase. Moreover, in this case neither
heat capacitycA,H ~Fig. 13! nor the thermal pressure coeffi
cients ~Fig. 14! exhibit any singularities aside from thos
corresponding to the buckling transition, indicating that th
was no distortion of the triangular lattice.

FIG. 21. Lateral pressure~a! and transverse pressure~b! as a
function of the 2D density for the full Marcus-Rice potential.

FIG. 22. Distribution of the total energy~kinetic plus potential!
of the particles for the 2D densities 1.060~empty diamonds!, 1.090
~filled circles!, and 1.120~empty squares!.
-
he

e

At the same density at which the distortion of the tria
gular lattice which we associate with the structural transit
begins, the particles begin to be displaced from the midpl
z* 50, and there is a marked increase in (]p/]r)T . The
former feature is evident in the dependence of the root m
square displacement of the particles fromz* 50 ~Fig. 23!. In
Fig. 24 we show the density profile along thez axis for
several average system densities in the range 1.040<r*
<1.180. Whenr* <1.040 that density profile is sensibl
uniform, there is only one phase present in the cell and
symmetry of the packing in thexy plane is hexagonal. At
very high average system densities,r>1.140, the density
profile along thez axis has peaks adjacent to the walls of t
cell, and there is only one out of plane phase. For densitie
the range 1.050<r* <1.140 there is a continuous transitio
between those two limiting situations with both compone
present at all intermediate densities.

It is interesting that the onset of the triangular distortio
begins with out of plane motion and finishes with the tran
tion to the ordered buckled phase. That transition occurs n
r* 51.150, at which density the constant volume heat cap
ity cA,H ~Fig. 3! and the lateral and transverse thermal pr

FIG. 23. Root mean square of the displacement of thez coordi-
nate from the midplane of the cell as a function of the 2D dens

FIG. 24. The density distribution as a function of the height
the cell for 2D densities 1.040~filled circles!, 1.090 ~empty
squares!, 1.140~empty diamonds!, and 1.180~empty circles!.
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7540 PRE 58RONEN ZANGI AND STUART A. RICE
sure coefficients~Fig. 4! show singularities. However, th
lateral and transverse pressure-density isotherms are con
ous ~see Fig. 21!, signalling again the occurrence of a co
tinuous phase transition. Clearly, the system has undergo
transition from a quasi-two-dimensional hexagonal solid t
buckled solid. This buckling transition was observed in bo
of the systems studied, i.e., with the full Marcus-Rice pot
tial and with the modified Marcus-Rice potential. Figures
and 26 display the lateral structure of the buckled phase
r* 51.140 and 1.160, respectively, for the system with
Marcus-Rice potential. The figures show that whenr*

FIG. 25. Lateral configuration of up~z.0, filled circles! and
down ~z,0, empty circles! particles for the 2D density 1.140.

FIG. 26. Lateral configuration of up~z.0, filled circles! and
down ~z,0, empty circle! particles for the 2D density 1.160.
nu-

e a
a
h
-

or
e

51.140 there are small regions of linear and zigzag buckli
but they are not ordered with respect to each other, whe
whenr* 51.160 there is an ordered phase of linear and z
zag buckling that has a broken symmetry with respect
twofold rotation. As already mentioned, the nearest neigh
connectivity is two dimensional even when the particles
in the buckled phase, so one can still construct the Voro
polygon in two dimensions to determine the number of ne
est neighbors~NNs!. This number is six for all the particle
in the high density region, but as the particles start to mo
out of the plane, one can count how many of those nea
neighbors move with this particle in the same direction.
uncorrelated configuration is generated when half of
nearest neighbors move with the tagged particle, while co
plete correlation is generated when there are just two nea
neighbors, thereby forming linear or zigzag buckling. In F
27 we show the average number of nearest neighbors
particle, all with the same value ofz* , as a function of the
two-dimensional density. We notice that whenr* 51.040
there are close to three nearest neighbors per particle
expected for a planar configuration of the particles~where
there is no correlation in thez coordinate of the NN par-
ticles!. However, asr* is increased above this density, th
number of nearest neighbors per particle decreases con
ously to two indicating that the onset of the ordered buckl
transition starts with the lattice distortion and the out
plane motion, but cannot proceed far because some of
particles are still in the plane. We have monitored the int
play between the triangular distortion and the buckling a
function of the sample thicknessH by carrying out simula-
tions at the constant densityr* 51.150. We find that whenH
increases sufficiently the ordered buckled triangular latt
melts, but that ordered buckling is sustained all the way
melting. Moreover, the distortion of the triangular lattice o
curs with the buckled phase present. After melting the se
ration of the system into two layers persists, and a bilay
separated by a small diffusive region, is formed whenH
.2. We thereby infer that a necessary condition for orde
buckling to occur is formation of a complete out of plan
arrangement. We also conclude that asH increases the or-
dered buckling transition will occur at lower densities, i.
the excess free energy for attaining the out of plane confi
ration decreases, and there is a point~a triple point! at which

FIG. 27. The number of nearest neighbors with the same sig
the height~z! coordinate as a function of the 2D density.
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the in plane triangular lattice becomes unstable with resp
to the buckled phase just as is the case for hard sph
between smooth hard walls@39#.

We note that for both the Marcus-Rice and modifi
Marcus-Rice potentials the global translational order para
eter exhibits a small minimum atr* 51.150, which we in-
terpret as arising from the occupation of the particles of
free volume that is accessible to them. At lower densities,
particles are fully or partially in the midplane, and for a
values ofz the projected triangular symmetry on the mi
plane is preserved. When buckling occurs, the particles h
less space to move in the vertical direction but the access
lateral volume~above the mid plane of the cell for particle
with z.0, and below for particles withz,0! is increased, so
the projected triangular symmetry can then accept small
tortions, and even rows of up and down particles can m
slightly with respect to one another. This increase in late
accessible volume will be a maximum for the lowest tw
dimensional~2D! density that supports ordered buckling;
our case that corresponds to the densityr* 51.150.

IV. DISCUSSION

The simulation studies reported in this paper were und
taken to test the inference that a quasi-two-dimensional
tem of particles with Marcus-Rice-type pair interactions w
support first order liquid-to-hexatic and hexatic-to-so
phase transitions. Our results show that this inference is
rect; for the isotherm withT* 51, these phase transition
occur sequentially as the density is increased fromr*
50.850 to 0.900. On the other hand, the inference wh
follows from the work of Bladon and Frenkel and Chou a
Nelson, that the existence of the first order liquid-to-hexa
and hexatic-to-solid transitions is coupled to the existenc
a first order isostructural solid-to-solid transition, is fou
not to hold. A model system in which there are Marcus-Ri
type pair interactions does support a solid-to-solid isostr
tural transition in the density range 1.050<r* <1.140, but
that transition is found to be continuous. Moreover, a mo
system in which there are modified Marcus-Rice-type p
interactions, without any attractive component, exhibits fi
order liquid-to-hexatic and hexatic-to-solid transitions in t
density range 0.840<r* <0.890 even though that syste
does not support a solid-to-solid isostructural transition.
nally, we have observed that both model systems stud
with and without an attractive component in the pair inter
tion, support a buckling transition when the density is grea
thanr* 51.150.

We now examine some of the features of the structu
changes associated with the observed structural transit
We consider, first, the high density buckling transition.
transition of this type has been shown to occur in a system
hard spheres confined between parallel plates@39#. The in-
formation concerning the system of hard spheres confi
between parallel plates which is pertinent to us is for
domain in which the separation between the plates is in
ranges,H,1.57s. In this domain the low density stabl
phase is the liquid. For any fixed value ofH, as the density is
increased the liquid undergoes a first order transition t
hexagonal two-dimensional solid. Further increase in
density generates a first order transition from the hexago
ct
es

-

e
e

ve
le

s-
e
l

-

r-
s-

r-

h

c
of

-
-

l
ir
t

i-
d,
-
r

l
ns.

of

d
e
e

a
e
al

solid to an ordered buckled solid phase; the latter phas
stable up to close packing. AsH is decreased below abou
1.5s, the densities at which the liquid-to-hexagonal solid a
the hexagonal solid-to-buckled solid transitions occur
crease, and the hexagonal solid-to-buckled solid transi
vanishes whenH5s. When the plate separation isH
51.2s, which is the value appropriate for comparison wi
our simulations, the difference in densities of the unbuck
and buckled phases is very small. AsH is increased from the
lower to the upper end of the ranges,H,1.57s, the den-
sity interval in which the buckled solid phase is stable gro
at the expense of that of the two-dimensional hexagonal s
phase, up toH51.57s, where there is a triple point betwee
the fluid, hexagonal two-dimensional solid and buckled so
phases. For larger values ofH, the hexagonal two-
dimensional solid phase is unstable.

As already noted, our simulations correspond toH
51.2s. For this value ofH the hexagonal solid-to-buckle
solid transition in the hard sphere system occurs atr*
51.17, very close to the valuer* 51.150 for the system
with the Marcus-Rice potential and the modified Marcu
Rice potential. If the density difference between the unbu
led and buckled phases for a system with the Marcus-R
potential is as small as it is for a hard sphere system,
combined effects of statistical error and density interval sa
pling in our simulations is likely sufficient to mask the fir
order character of the transition between these phases.

We now consider the isostructural solid-to-solid transiti
in the system with the Marcus-Rice potential. The unus
feature associated with this transition is that, in the coex
ence region, the low density phase has a fixed lattice spa
but the high density phase has a lattice spacing that decre
continuously with increasing density. We note that the p
ticle spacing in the low density phase corresponds to
minimum in the Marcus-Rice potential, and the density d
pendent particle spacings in the high density phase co
spond to points on the softly repulsive part of the Marcu
Rice potential. In a conventional first order transition, t
average density in the coexistence region fixes the amo
of each phase since the densities of these phases are
dependent on the average density~the lever rule!. In our
case, in the coexistence region the phase with particle s
ing equal to the minimum in the Marcus-Rice potential ha
fixed density, and the remainder of the space is taken up
the other, higher density, phase. The two phases are isos
tural both because there is insufficient room for rearran
ment of the particles, and because hexagonal packing is
most efficient of all possible particle packings in the plan

We interpret the observation that the particle spacing
the higher density phase adjusts to accomodate to the s
available as follows. The Marcus-Rice potential, althou
everywhere continuous, has a relatively sharp ‘‘corne
where the soft repulsion merges with the attractive well.
similar corner exists in the model potential which has a h
core plus a narrow finite height step repulsion. For the lat
it is known that when the width of the step repulsion is sm
compared to the hard core diameter, the potential support
isostructural solid-to-solid transition@40,14#. We expect the
corner in the Marcus-Rice potential to play a similar role
cleanly separating the potential energy surfaces of the h
and low density phases. It is plausible that the higher den
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7542 PRE 58RONEN ZANGI AND STUART A. RICE
solid supported by the Marcus-Rice potential will be ve
much more compressible than the low density solid beca
of the difference between the responses to displacem
along the soft repulsion in the ranges<r * <1.04s and dis-
placement in the potential well in the range 1.04s<r *
<1.06s.

Arguably the most interesting inference which can
drawn from our simulation results concerns the influence
motion in thez direction on the character of the isostructu
solid-to-solid phase transition. Although both the stric
two-dimensional simulation studies of Bladon and Fren
and the analytical theory of Chou and Nelson appear to
count for the phase transitions we find in the density ra
0,r* <1.140, the fact that the associated isostructural so
to-solid transition is required to be first order is not in agre
ment with our results. Moreover, we find that the continuo
isostructural phase transition in the density range 1.
<r* <1.140 involves displacement of the particles in thez
direction, and that the isostructural character of the transi
is achieved because the projection of the positions of
particles withzÞ0 on the median plane retains the triangu
symmetry of the low density phase. Then the predicted
havior of a strictly two-dimensional system is retained in
quasi-two-dimensional system via exploitation of motion
thez direction. An analogous situation occurs in the analy
of the phase diagram of Langmuir monolayers, modeled
rods attached at one end to the water surface. Kaganer
co-workers@41# showed that a strictly two-dimensional Lan
dau theory analysis of the Langmuir monolayer phase
gram, based on the assumption that one-dimensional cry
lization in the monolayer is stable so that order parame
can be assigned for that crystallization in thex andy direc-
tions, accurately reproduces all the characteristic features
served. However, one dimensional crystallization is ab
lutely unstable in two dimensions, but is stable in thr
dimensions. Since a number of the phases of a dense L
muir monolayer differ by virtue of the tilt of the rodlike
molecules relative to the normal to the surface, change
phase necessarily involve some motion by the molecule
the z direction, with the projections of the molecules on t
xy plane constrained to satisfy the packing symmetries of
phases. As in the study reported in this paper, exploitatio
motion in thez direction preserves the essential characte
the predicted two-dimensional behavior. We suspect tha
the real three-dimensional world, where realizations of tw
dimensional systems always involve some coupling with
third dimension, the behavior we have found will be co
mon.
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APPENDIX: PRESSURES
AND THERMAL PRESSURE COEFFICIENTS

The existence of an external field along thez axis,
whether symmetric aboutz50 as in our case, or asymmetri
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implies that all of the thermodynamic properties of the s
tem are functions of the strength of the external field. S
pose the system is contained in a rectangular box. IfN, T,
and V are held constant, the field strength determines
area in thexy plane,A, and the height in thez direction,H.
Alternatively, one can work with the variablesA and H in-
stead of the volume and the field strength. Moreover, in
presence of an external field along thez axis we must con-
sider separately the variation of the thermodynamic prop
ties of the system parallel toz ~the transverse componen!
and in thexy plane~the lateral component!. We note, as an
exception to the preceding statement, that the heat capa
at constant volume and field strength does not have diffe
transverse and lateral values since it is equivalent tocA,H .
We also note that because the thermodynamic potential
the system depend on the strength of the external field, wh
represents an extra degree of freedom, the Gibbs phase
assumes the form

f 532p1c, ~A1!

wheref is the number of degrees of freedom,p is the number
of phases, andc is the number of components. Then, in a o
component system, there can be a point where four ph
coexist, a line of a coexistance between three phases, e

1. Lateral and transverse pressures

The expressions for the lateral and transverse press
can be derived either from mechanics or from thermodyna
ics. The mechanical treatment was introduced by Claus
for homogenous systems@42#. Consider the equations of mo
tion in thexy plane of a particle with massm and with center
of mass coordinatesx andy, subject to a force whose com
ponents areFx andFy :

m
d2x

dt2
5Fx , ~A2a!

m
d2y

dt2
5Fy . ~A2b!

Multiplying Eq. ~A2a! by 1
2 x, Eq. ~A2b! by 1

2 y, and sum-
ming over all theN particles in the system, yields

1

4 (
i 51

N
d2

dt2
@m~xi

21yi
2!#5

1

2
m(

i 51

N

~vxi

2 1vyi

2 !

1
1

2 (
i 51

N

~Fxi
xi1Fyi

yi !, ~A3!

wherevx andvy are the components of the velocity vector
the x andy directions. Note that this equation describes t
motions of theN particles in thexy plane for all values ofz.
Integration over time from 0 tot yields
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1

4 F d

dt (
i 51

N

m~xi
21yi

2!G
0

t

5t
1

2
mK (

i 51

N

~vxi

2 1vyi

2 !L
1t

1

2 K (
i 51

N

~Fxi
xi1Fyi

yi !L .

~A4!

For a system in equilibrium, the left hand side of this equ
tion is zero. The second term on the right hand side is
lateral virial with a negative sign, which can be written
terms of internal forces~between the molecules! and external
forces ~stresses across the boundaries of the system!. The
stress per unit area is the lateral pressure. IfdS is a surface
element of the lateral boundary surfaceS l , and nx and ny
are the directions of the outward normals in thex and y
directions, the contribution of the external forces to the vir
is 1

2 pl**S i
(nxx1nyy)dS. Using Green’s theorem, this su

face integral can be rewritten as a triple integral over
volume of the system, and we need to evaluate the st
along the entire heightH. The internal virial can be ex
pressed as the sum over pairs of particles of the radial
rivative of the interparticle potential,

1

2 (
i 51

N

~Fxi
xi1Fyi

yi !52
1

2
plE E E

V
S ]x

]x
1

]y

]yDdV

2
1

2 (
i 51

N

(
j . i

N xi j
2 1yi j

2

r i j

]u~r !

]r U
r 5r i j

~A5!

52plV1Wl , ~A6!

whereWl is the internal lateral virial. From the equipartitio
theorem in the thermodynamic limit (N→`), 1

2 m( i 51
N (vxi

2

1vyi

2 )5NkBT, which leads to the following expression fo

the lateral pressure:

plV5NkBT1^Wl&. ~A7!

The calculation of the transverse pressure follows
same procedure. We find that

1

2
mK (

i 51

N

vzi

2 L 52
1

2 K (
i 51

N

~Fzi
zi !L . ~A8!

The transverse virial also has internal force and exte
force contributions. The transverse boundary surface isS t
52A, but since in our model system there is no perio
boundary condition in thez direction, nor is it the case tha
the particle diameter is much smaller thanH, the transforma-
tion to a volume integral yieldsV85Ah. We then find, for
the transverse pressure,

ptV85NkBT12^Wt&, ~A9!

where the internal transverse virial is
-
e

l

e
ss

e-

e

al

c

Wt52
1

2 (
i 51

N

(
j . i

N zi j
2

r i j

]u~r !

]r U
r 5r i j

. ~A10!

The transverse pressure can be calculated in a more d
form since we know the external field in thez direction,

pt5
1

V8 (
i 51

N

zi

]uext~z!

]z U
z5zi

5
1

2A (
i 51

N
]uext~z!

]z U
z5uzi u

.

~A11!

Combining the expressions for the lateral pressure and
transverse pressure@Eq. ~A9!#, and lettingpl5pt5p andh
→H, we recover the homogeneous case pressure

pV5NkBT1 2
3 ^W&. ~A12!

The internal virial W is W5Wl1Wt5
2 1

2 ( i 51
N ( j . i

N r i j @]u(r )/]r #ur 5r i j
. Setting H51 (h50) so

thatV5A in Eq. ~A7! gives the pressure in two dimension
which has units of force per unit length, whereas the tra
verse pressure~A9! goes to infinity.

2. Thermal pressure coefficients

Expressions for the thermal pressure coefficients can
obtained by differentiation of Eqs.~A7! and ~A9! with re-
spect to the temperature at constantA andH. If we use the
canonical ensemble, then those quantities can be calcu
from the cross correlation between the fluctuations in
potential energy and the corresponding virials:

S ]^Wl&
]T D

A,H,N

5
1

kBT2 ^dWldU&, ~A13a!

S ]^Wt&
]T D

A,H,N

5
1

kBT2 ^dWtdU&. ~A13b!

For the canonical ensemble, we find

S ]pl

]T D
A,H

[g l5
1

V S NkB1
^dUdWl&

kBT2 D , ~A14a!

S ]pt

]T D
A,H

[g t5
1

V8 S NkB1
2^dUdWt&

kBT2 D . ~A14b!

We now use the transformation of fluctuations between
sembles derived in Ref.@38# to rewrite these expressions fo
the microcanonical ensemble:

g l5
1

V S NkB1
2cA,H^dUdWl&

3kB
2T2 D , ~A15a!

g t5
1

V8 S NkB1
4cA,H^dUdWt&

3kB
2T2 D . ~A15b!
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