PHYSICAL REVIEW E VOLUME 58, NUMBER 6 DECEMBER 1998

Phase transitions in a quasi-two-dimensional system
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We report the results of molecular dynamics simulations of a quasi-two-dimensional system designed to
mimic the quasi-two-dimensional colloid suspensions studied by Marcus and[Rigs. Rev. E55, 637
(1997]. The simulations duplicate all of the important qualitative findings of Marcus and Rice, in particular the
occurrence of first order liquid-to-hexatic and hexatic-to-solid transitions. At higher densities this system also
exhibits an isostructural solid-to-solid transition and a buckling transition, both of which are continuous. We
find that the dislocation pair, free dislocation, and free disclination concentrations do not satisfy the predictions
of the Kosterlitz-Thouless-Halperin-Nelson-Young theory. Our results cast light on the role of the out of plane
motion in determining the global character of the phase diagram of a quasi-two-dimensional system, and they
require reconsideration of the suggestion by Bladon and Frdiels. Rev. Lett74, 2519 (1995] of the
character of the driving force for the first order liquid-to-hexatic and hexatic-to-solid transitions.
[S1063-651%98)02612-9

PACS numbes): 64.70.Dv

I. INTRODUCTION which is based on a description of the two-dimensional solid
as a deformable elastic medium with inclusion of the two
It is now well understood that the character and degree oflasses of point topological defects with smallest excitation
ordering present in a system is dependent on its spatial denergy to mediate structural changes, two-dimensional solids
mensionality. Indeed, in one- and two-dimensional systemsnelt via sequential continuous phase transitions. The first
fluctuations can completely destroy long range order of certransition is from the solid with quasi-long-range positional
tain types. order and long range bond orientation order to a phase with
The nature of the decay of translational and orientationashort range positional order and quasi-long-range bond ori-
order in a condensed phase are conveniently described astation order, the so called hexatic phase. This transition is
follows. In a three-dimensional system the amplitude of thedriven by the dissociation of bound dislocation pairs in the
envelope of the density-density correlation function of thesolid. The second transition transforms the hexatic phase to
ordered solid phase has a nonzero constant value in the limithe liquid phase, in which both positional and bond orienta-
of infinite separation; this behavior defines the characteristition orders have short range; it is driven by the dissociation
feature of long range positional order. In a two-dimensionalbf individual dislocations to form disclinations. Although it
system the envelope of the density-density correlation funcis currently preferred, the transition sequence described is
tion of the solid phase decays to zero algebraicélly., as not the only possible mechanism for two-dimensional melt-
r—") in the limit of infinite separation, which behavior de- ing. For example, it is in principle possible for the disloca-
fines the characteristic feature of quasi-long-range order. Artion unbinding transition to be preempted by grain boundary
guments for the lack of long range translational order in a@nduced melting, as suggested by CHL8]. We note that the
two-dimensional solid were first presented in Ré¢fld, [2—  KTHNY theory of melting in two dimensions is not based on
4], and [5, 6], where it was shown that long wavelength any particular choice of intermolecular potential energy
phonon excitations were sufficient to destroy the translafunction; it remains valid for any system which can be char-
tional symmetry of the solid in the limit—o; a rigorous acterized as a deformable elastic medium.
proof of this behavior was later presented by Mermin for the However, the results of recent simulations of the phase
case of inverse power potentialgr)=e(o/r)™, with m  diagram of a two-dimensional assembly of particles, which
>2 [7]. Mermin also pointed out that the absence of longinteract via a pairwise additive potential consisting of a hard
range translational order in a two-dimensional solid does notore repulsion and a very narrow square well attractar
preclude the existence of long range orientational orderyery narrow step repulsior14], imply that the mechanism
characterized by a persistent correlation in the orientations aff melting in two dimensions can depend on the nature of the
the local crystallographic axes in the limit-c. We will intermolecular potential energy function. Bladon and Frenkel
refer to the long range order in the orientations of the vectorgound, for the potential energy function described above, that
that connect the centers of nearest neighbor particles as bomehen the width of the attractive well is less than 6% of the
orientation order. hard disc diameter the system supports two ordered solid
One of the consequences of the loss of long range tranghases with the same packing symmetry. The coexistence
lational order in a two-dimensional solid, first pointed out region of the first order transition between these solid phases
about 20 years ago, is that the character of the melting trarends at a critical point, near which density fluctuations ren-
sition can be fundamentally different from that of the meltingder the solid phases unstable with respect to dislocation un-
transition in three dimensions. According to the Kosterlitz-binding, and the system supports a hexatic phase. For the
Thouless-Halperin-Nelson-Youndc THNY) theory[8—17), case when the square well width is close to the limiting value

1063-651X/98/58)/752916)/$15.00 PRE 58 7529 © 1998 The American Physical Society



7530 RONEN ZANGI AND STUART A. RICE PRE 58

for which the low density solid phase becomes unstable, the 500
hexatic region can extend to the melting line. When this
occurs, the liquid-to-hexatic transition is predicted to be first 4.00 ¢
order while the hexatic-to-solid transition may be either first
or second order. An analytic basis for these results was pro- 3%
vided by Chou and Nelsofi5], who incorporated into the
KTHNY theory an explicit solid-to-solid transition. This
analysis, which assumes that the elastic energy of the systen
includes a term descriptive of the strain arising from the
change in density associated with an isostructural solid-to-
solid transition, is able to account for the essential features of
the phase diagram found by Bladon and Frenkel. However,
the Chou-Nelson analysis does not provide a microscopic '
explanation for the observed phase diagram because it as
sumes,a priori, the existence of the isostructural solid-to- r*=ric
solid transition, and incorporates its effects into the system 8.0
free energy density.

Experimental testing of the KTHNY predictions concern-
ing the character of two-dimensional melting has been lim-
ited by the difficulty of preparing systems which are accept-
able representatives of the theoretical modes]. Typical
representatives of two-dimensional systems are monolayers
supported on a substrate. Nelson and Halpg&jmand Young
[11] showed that a weak incommensurate substrate potentia
only slightly modifies the character of the predicted solid-to-
hexatic transition. Among the interesting changes known to 20 }
be induced by the potential of an ordered substrate are long
range bond orientation order in the hexatic phase, and a
washing out of the dislocatiendisclination unbinding tran- o ) )
sition when the substrate has sixfold symmetry. Also, if the -0.20 -0.10 000 0.10 0.20
two-dimensional solid monolayer has a preferred orientation . z=o . .
with respect to the supporting substrate, and that orientatiop FIG. |1 dMarCUS'R'Cf? pOtem"j ?]s a func“?n of th.elreducfed n-
is not along a substrate symmetry axis, the melting transitione'r'oalrtlc e distancéop figure, and the external potential as a func-

. . . . . —tion of the reduced center of mass coordinate along the vertical axis
IseXpededtopeIgn94me’CO“eSpondmgtothe“Noequwa&ax@ﬂneaaﬂedﬂomthecen@roﬁhea@bﬂomf@u@ﬂnbom
lent ways of orienting the two-dimensional solid with respectcasesl the energy is in units &f

to a substrate symmetry axis. Notwithstanding these exten-

sions of the theory to include substrate effects, the necessahave confirmed the inferences of Bladon and Frenkel, i.e.,
and sufficient conditions for a real quasi-two-dimensionalthat melting in that system involves sequential first order
system to behave as if it were truly two dimensional remainsolid-to-hexatic and hexatic-to-liquid transitions.

to be established. It is certainly necessary, but not sufficient, Theoretical tests of the KTHNY theory predictions also
that the range of in-plane correlations greatly exceed thare abundarnt26,27). An early computer simulation study of
range of out-of-plane correlations, and that the interactionswo-dimensional melting in a system with Coulomb interac-
between the system and its supporting substrate furnish onljons is consistent with the predictions of the KTHNY theory
a weak perturbation to the properties of the system. In part28,29, as is a more recent study of a two-dimensional col-
ticular, we believe that the extent to which a realization of aloid system with Yukawa interactiorf80]. The most recent
two-dimensional system deviates from true two-dimensionalind most extensive computer simulation of the melting of a
character by exploiting some out-of-plane motion can play dwo-dimensional system of particles which have an interpar-
crucial role in the mechanism of the melting transition. ticle repulsive potential of the™ 12 form concludes that there

With that caveat in mind, we note that experimental stud-are continuous transitions between the solid and hexatic
ies of the melting of ordered electrons supported on the suphases and hexatic and liquid phases, but that the density
face of liquid He[17-19, and of the melting of an ordered range in which the hexatic phase is stable is very s34l
array of charged polystyrene spheres between two platdsarlier, less definitive, computer simulations of the two-
[20-23, are consistent with many of the predictions of thedimensional hard disc systefand of similar systems with
KTHNY theory, but some deviations are observed in indi-short range repulsive interactigriead to the conclusion that
vidual studies[24]. A few other experimental studies give two dimensional melting is a first order transition.
results sometimes in accord and sometimes not in accord This paper reports the results of extensive computer simu-
with the KTHNY theory. Recent experimental studies of alations of a model designed to mimic the system studied by
guasi-two-dimensional dense assembly of uncharged sterMarcus and Ric¢25]. In this model the interaction between
cally stabilized polymethylmetacrylate spheres between twapherical particles is represented by a potential like that in-
plates [25], with an interparticle interaction of the form ferred by Marcus and Ricésee Fig. L it has a steeply
shown in Fig. 1(which we call the Marcus-Rice potenfial repulsive core at =o, a soft repulsion in the regioo=<r
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<1.040, and a weak attraction in the region 154r Il. MODEL SYSTEM AND COMPUTATIONAL DETAILS
=<1.060. The spheres are constrained to form a quasi-two-

dimensional assembly by a continuous potential acting in the The model system studied had 2016 particles contained in
z direction, representing the influence of the cell walls. Thisa rectangular box with side lengths in the ratioy
potential confines the center of a sphere to be, effectively=7:(8v3/2). We find it convenient to use the reduced vari-
within £0.10 of the center plane of the cell. The results of gples r*=r/¢, z*=2/0, T*=kgT/e, p*=pc? and m
these simulations duplicate all of the important qualitative— 1 ith o the diameter of the particle; the depth of the

findings of Marcus and Rice, in particular the occurrence ofyir4tive potential wellp the number density, anth the

first order liquid-to-hexatic and hexatic-to-solid phase transisass of the particle. Although the particles can move in the

:'ornf' V\I/% ?ISO fll?ddttrhit ?tllt r:g?e”r (\j/\(/endSIltJy thebre Iiliin 'fro‘;triuci direction under the influence of adependent one body
ural solid-1o-so ansition, Toflowed Dy a bucking transi- potential(see beloy, we choose to characterize the state of

tion. However, unlike the results of the two-dimensional : . ) .
. : . the system with the two dimensional number density
simulations of Bladon and Frenkel, or the analysis of Chou ) . . .
=N/A, whereA is the area of the simulation cell in thxg

and Nelson, this isostructural transition is continuous, as i§ _ . . .
also the buckling transition. We also find that the dislocationP!2n€, Since the height of the cel, is constant in all of the
pair, free dislocation and free disclination concentrations d¢imulations presented in this paper. Periodic boundary con-
not satisfy the KTHNY predictions. Our results cast light on ditions were imposed on the simulation cell in thendy

the role of out of plane motion in determining the global directions, but not in the direction. The same number of
character of the phase diagram of a quasi-two-dimensiondarticles was present in the simulation cell for all of the
system, and they require reconsideration of the suggestion Biensities studied. To study the properties of the system with
Bladon and Frenkel of the character of the driving force fordifferent particle densities, we changed the area of the simu-
the first order liquid-to-hexatic and hexatic-to-solid transi-lation cell in thexy plane.

tions. The interparticle potential for the model system,

4

*\ — r*—we* 2 10—19 *
u(r*)=—=¢ ex —W +2X Sr—i W

1) 764 r{ (r*—o.geﬂ
+1.2s exg — , (2.1

was designed to have the features inferred by Marcus aniibl confines the particles as if they were in a cell with an
Rice (see Fig. L The first term in Eq(2.1) represents the effective height of 1.2. As is convenient for the purpose at
attraction between colloid particles when there is incipienthand, we will sometimes describe the simulation results us-
overlap between the stabilizing brushes on their surfaces; fdng reduced units and sometimes using absolute units.
simplicity we have taken the functional form of this attrac-  The molecular dynamicéMD) simulations were carried
tion to be an inverse even power exponent with depth OUt using the “velocity Verlet” algorithni32], and the Ver-
—1.0kgT and widthww/o=ww* =0.006, centered avc*  |et neighbor list method for the calculation of the potential
=1.05. The second term in E(.1) is the core-core repul- €Nergy[33,34. The distance at which the potential was cut
sion, which is the dominant contribution tqr*) whenr* _Off was 1.5, and the neighbor I'.St cut off was 2.4 times the
in plane projected average spacing of the particles. The need

=<1; the functional form chosen is very nearly a hard core dati fth iahbor list hecked at i
repulsion but has continuous derivatives. The last term in E Or updaling of the neighbor Iist was checked at every ime
tep. The average time step used was, in reduced units, 5

(2.2) is an interpolating soft repulsion, representing the en- 10-% th ted f . | did
tropy cost associated with interpenetration of the stabilizin ; the associated rms fluctuation in total energy did not
xceed one part in 20

brushes attached to the surfaces of the colloid particles; t o X . . .
plays the role of a spline function between the aforemen- The initial configuration for the simulations was taken to
tioned attractive and repulsive terrtsee Fig. 1 The par- be a perfect triangular lattice with all particles located in the

ticles in the model system were also subjected to a one bodjfanez="0. The ﬂ“i%ﬁa”d hexatic phases of the system were
external potential in the direction. Consequently, all of the qunétgrated for 6<10° MD steps, and then data collected for
thermodynamic properties of the model system are functiong < 10° MD steps, every 100 time steps. The solid phases of

of the strength of this external potential. However, the shapd€ System were *equilibrated for a longer time; for all densi-
of the potential, ties greater thap* =1.130 the system was equilibrated for

at least 1 10° MD steps. We checked the achievement of
Uexi(Z*) =De(z*)¥, (2.2 equilibrium by the lack of variation in time of the pressure,
energy, and temperature, and of the pair and bond orientation
is such as to confine the system to form a slab with wellcorrelation functions.
specified heightH, so we can represent its thermodynamic  Since the linear momentum in thedirection is not con-
properties with the variablds, T, A, andH in place ofN, T, served in our model systertbecause there is no periodic
V, and the strength of the external potential. In Eq2), z* boundary condition in this degree of freedprthe tempera-
is the distance from the center of the cell to the center ofure is related to the kinetic ener¢fyand the total number of
mass of the particle ang=24 andD=2x 10?* this poten- degrees of freedom,N8— 2, by
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2K

N
1 e
= 3N-2° (2.3 CDT:N 2,1 e~ (2.89

The required temperature was created by multiplication o

the velocities by an appropriate constant. dimensional lattice. The corresponding global orientational
The lateral and transverse pressumgsand p;, respec- order parameter is defined by

tively, were calculated from the lateral and transverse inter-

(/vhereé is a reciprocal lattice vector of the triangular two-

nal virials W, and W,, where 1 N
bg=— 2>, V. 2.8b
18 & B+yaun) TN Ve (289
W=—z3 > XY (2.43
2=y o r=rj The correlation lengths associated with these order param-
eters are derived from the decays of the envelopes of the pair
1 NN Zi2j au(r) distribution function
We=-=2> > — (2.4b
2 i=1 |j>i r” o"l’ r=r.. V N N
ij . R
g<r>=ﬁz<_ > a(r—ri,->>, (2.9a
We find =10
o NksT+ (W) .58 and the bond orientation function
1= N/ .
v Ge(1)=(V5(0)¥e(1)), (2.9b
_ NkgT+2(W)) 2 5h where all the vector and scalar distances are defined to be
Pe= & ' (2.5 projections onto thety plane.

The susceptibilities associated with the translational and

whereV'=Ah andH=o+ h. orientational order parameters are
Following Landau, a transition between phases is conve-

niently characterized by an order parameter that is zero in N 2 2
one of the phase&sually taken to be the high temperature XTTT [(PD) = (P,
phasé and nonzero in the other pha€. The order param-
eter can be defined with respect to the entire syggobal and
order parametgr or it can be defined to take into account
only the local environment of a particle.g., the nearest N ) )
neighbor distribution An abrupt change in the rate of Xe=7 [(P5)—(Pg)"]. (2.100
change with density of the global order parameter is a signa-

ture of the occurrence of a first order phase transition; in thee divergence of these susceptibilities is a signature of the

coexistence region the order parameter is a linear function Qfstapility of the system, usually interpreted as a change of
the density, a dependence which is equivalent to the 'eveﬁhase. We note that it has been argued that in a two-

rule. The b_ehavi_or of the distribution_ of local order param-yimensional systeny; can diverge without an instability
eters provides information concerning the nature of theoccurring[36 37.

change in structure associated with the phase transition. As is shown in the Appendix, the inherent inhomogeneity

The local order parameter descriptive of orientationalyt our model system results in different sets of thermody-
symmetry in a phase is defined by the projection of the bonghamic susceptibilities for the lateral and transverse sub-

orientation onto a local average over the orientations of th%paces. The heat capacity per particle at congtandH is

(2.108

bonds to the nearest neighbors: equivalent to the heat capacity at constant volume for a ho-
o mogenuous system. For the microcanonical ensemble, Leb-
_i 2’ T*p 26 owitz, Percus, and Verlet showg88] that the fluctuations in
(Pei_ni & o eiTen (2.6 the kinetic energyor in the potential energyare related to
Can by
\If6-=i % el8%i, (2.7) INKET?
" =1 (2.11

CAHTBNIGTZ—4(oK2)

In Egs.(2.6) and(2.7), the sums are taken over thenearest
neighbors to particle, as determined by a two-dimensional
Voronoi polygon constructiofi35,34. We denote by’; the
vector separation of particlasandj, and by ¢;; the angle
betweenr’; and an arbitrary fixed axis. The global transla- 1
tional order parameter is defined to be the sum of the Fourier vi== | Nkg+
components of the density, v

The lateral and transverse thermal pressure coefficients
were calculated from the cross correlation between the fluc-
tuations in the potential energy and the corresponding virials:

2Cp 1(SUSW,)
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FIG. 2. Lateral pressureempty circles and transverse pressure ¢ 3 eat capacity at constaatandH as a function of the
(filled circles isotherms T* =1) as a function of the 2D density 2D density

for the full Marcus-Rice potential.

Acp { SUSWY that the transition takes place just in theplane. In fact, we
— (2.12b find that in the density range 0.85(* <0.900 there are
3kgT two first order transitions, namely, liquid to hexatic and
Pexatic to solid. The identities of the coexisting phases were
ascertained from their respective pair correlation and bond

1
'ytzv NkB+

Chou and Nelson showed, from an analytic extension o
B ettt oenaton corrlaton unciong(r*) and Ge(r). These
functions are displayed in Figs. 5 and 6, respectively, for

of one solid phase with respect to the other. We checked fotrhree sample densities that span the coexistence region,

the existence of_such a rotation by examining the orlen_tatlonrs]amelyp* =0.900, 0.870, and 0.850. At the high end of the
of the phases with respect to a fixed axis of the Voroni poly-densit range botly(r*) andGq(r*) display behavior char-
gons(mostly hexagonsin the solid. The distribution of ori- cteris{ic ofgan ordered solid 6hase anpd eslltthe low end of the
entations of the Voroni polygons was represented in terms aforer! 1ap Vo o
' density range they both display behavior characteristic of a
the angled; defined by - .
liquid phase. In the former case the envelopegff*) de-

n cays algebraically as* — and the envelope o0Gg(r*)
> Sin(66;;) does not decay as‘ — o, while in the latter case the enve-

tar{ﬁ-)z(— I 2.13 lope ofg(r*) andGg(r*) decays exponentially as® — oo,
: n;/ i ’ ' When p* =0.870, in the middle of the coexistence region,

>, cog66;) the envelope of(r*) decays exponentially as — o, with
! a falloff that is slower than whep* =0.850, and the enve-
lope of Gg(r*) decays algebraically, with a power law ex-
lll. RESULTS OF THE SIMULATIONS ponent of—0.30, to a nonzero value a§—o. As shown in
Fig. 7, the global translational order paramebsr decays to

All of the simulations reported in this paper refer to a ) ) -
zero nearp* =0.880, while the global orientational order

guasi-two-dimensional system with reduced temperatfire
=1, and a sample thickness determined by the potential dis-
played in Eq.(2.2). We will report the results of calculations

of the properties of the model system as a function of tem- _ s0o}
perature and sample thickness in another paper.

100.0

O=-—0 lateral
—® transverse

@
e
©

(.0 /g T

A. Liquid-to-hexatic and hexatic-to-solid transitions

We consider first the results of simulations using the po-
tential displayed in Fig. 1. Figure 2 displays, for the isotherm
T* =1, the lateral pressure and the transverse pressure as
function of density for the range 0.78(Q* <1.000. The
weak van der Waals loop evident in the lateral pressure iso-
therm is strong evidence of a coexistence region of a first
order transition. This inference is supported by the observa-
tion that neither the constant volume heat capagity; (Fig.

3), nor the lateral or transverse thermal pressure coefficient
(Fig. 4), is singular in the density region where the van der
Waals loop occurs. On the other hand, there is no van der FIG. 4. Lateral(empty circle} and transverséfilled circles
Waals loop in the transverse pressure isotherm, indicatinghermal pressure coefficients as a function of the 2D density.

ermal pressure coefficients

£
f
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0.80 -r

g(r*)

S pe— To0 750 700 25.0 00 50 0.0 50 200 25.0
r.* r*
FIG. 5. The pair correlation function of the model system with  FIG. 6. The bond orientation correlation function of the model
2D densitiegfrom top to bottom 0.850, 0.870, and 0.900. system with 2D densitie§from top to bottom 0.850, 0.870, and
0.900.

parameterd g decays to zero negr* =0.850. Given that the

corresponding susceptibilities exhibit singular behavior a . :

those densitiegFig. 8), we infer that between the solid and tthe asymmeér.y of :Ee IdIStrl'bUt.'ont (1_ecre|ase§ as the detnsn_y

liquid phases there is another phase, one which has orient gcreases. since the local orientational order parameter 1
efined with respect to the angular distribution of bonds to

tional order but no translational order. ” < ) )
The density dependence of the distribution of local orien-{N€ néarest neighbors of a particle, we expect it to be zero in
¢he liquid phase and nonzero in the hexatic phase. In the

tational order parameters for the liquid phase in the range'™ - ‘ S
0.705<p* <0.805 is shown in Fig. @), while the density Solid phase the local orientational order parameter distribu-
dependence of the distribution of local orientational ordertion peaks at a value close to 1 at very high density and, as
parameters for the solid phase in the rangeeXpected for a homogeneous solid, the peak of the distribu-

0.945< p* <0.995 is shown in Fig. @). In both the liquid  tion shifts continuously to smaller values as the density de-
and solid phases the distribution of the local orientationakcreases. The distribution of the local orientational order pa-
order parameter is unimodal. In the liquid phase that distritameter in the solid phase is markedly less asymmetric than
bution is asymmetric, with a peak at zero for all densities;in the liquid phase.
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(empty trianglesorder parameters as a function of the 2D density.

The density dependence of the distribution of local orien-
tational order parameters for the coexistence region
0.850<p*=<0.900 is shown in Fig. 10. When 0.89(p*
=0.900, this distribution is unimodal with a peak at some
nonzero value of the order parameter. In contrast, when
0.850< p* <0.880 this distribution is bimodal with one peak
located atpg=0.

The KTHNY theory interprets the mechanism of the pre-
dicted two stage continuous melting to involve dissociation
of dislocation pairs to form free dislocations followed by the
dissociation of free dislocations to form disclinations. In Fig.
11(a) we show the fractions of particles which are five-, six-
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and seven-coordinated as a function of density, and in Fig. FIG. 9. The local orientation order parameter distribution for
11(b) the fractions of dislocation pairs, free dislocations, andseveral 2D densities(a) 0.705-0.805, representing the liquid

free disclinations as a function of density. Dislocation pairsPhase(b) 0.945-0.995, representing the solid phase.

first appear in our simulation sample at a density just above

the high density end of the van der Waals loop, and freef the liquid, hexatic, and solid phases identified above, for
dislocations and free disclinations start to appear just insidene system with the full Marcus-Rice potential, are listed in
the high density end of the van der Waals loop. We do nofrable I.
find any region in which there are free dislocations but no The results of the Bladon-Frenkel analysis of the phase
free disclinations, in contrast with the behavior predicted bydiagram of a two-dimensional assembly of disks which in-
the KTHNY description of the hexatic phase. The densitiegeract via a pairwise additive potential consisting of a hard
core repulsion and a very narrow square well attractamra

0.050 e
0w
o
© X
E
= 0.040 | A
= A
€
2
5
2 o030 |
A L ] A orientational susceptibility
g ° @ translational susceptibility
2
2 ooz A
= Ap
k]
2
= A
2 0.010 |} A A
8 . 1
>3
%]

hutatate .

0.000 S Bedidar T
070 075 080 085 080 095 100 105 110 115 120

FIG. 8. The susceptibility of the translatiorlled circles and
orientation(empty triangles order parameters as a function of the

125

100 |

75

50

Relative intensity

25

0.0

0.900

0.850

0.860

0.870

-1.0

-0.5 0.0 0.5
local orientational order parameter

1.0

FIG. 10. The local orientation order parameter distribution in-
2D density. side the van der Waals loop, for the 2D densities 0.850—-0.900.



7536 RONEN ZANGI AND STUART A. RICE PRE 58

1.0
14.0 |
O—0 lateral pressure

@—@ fransverse pressure
120 |

e
3
T

100 |

g
@

8.0 F

3

PC /e

O0—0{-6
o—e -7

o
n
T

Fraction of coordination numbers
(=]
I

0.75 0.80 0.65 0.90 0.95 1.00
No/A

0.80 0.90 1.10

“NaYA

FIG. 12. Lateral pressuempty circle$ and transverse pressure
(filled circles isotherms as a function of the 2D density for the
modified Marcus-Rice potential.

0.25 | e—a dislocation pairs
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We show in Fig. 12, for th@* = 1.0 isotherm, the lateral
and transverse pressures versus density for the range 0.740
<p*=<1.000. As in the system with the full Marcus-Rice
potential, there is a van der Waals loop in the lateral pressure
(while the transverse pressure is continypurgdicating that
the system supports a first order phase transition that occurs
in the plane. Note that in the absence of the attractive well
the van der Waals loop is shifted to the slightly lower density
range 0.84&p*<0.890. In this system both the constant
volume heat capacitg, yy (Fig. 13 and the thermal lateral
and transverse pressure coefficie(fgy. 14 have a sharp
peak atp* =1.150, but nowhere else in the density range
studied. As in the system with the full Marcus-Rice potential,
the global translational and orientational order parameters
become zero at different densiti@sig. 15, at which their
corresponding susceptibilities are singuldig. 16. The
densities of the liquid, hexatic, and solid phases in the sys-
tem with the modified Marcus-Rice potential are listed in

very narrow step repulsigrare very sensitive to the width of Table I.
the attractive wellor the step repulsionbecause the system

0.20 |

0.15 |

Fraction of defects

0.10 ©

0.05 |

.A‘l.\,
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O'O% 70
by

FIG. 11. (@) The fraction of particles which has Eempty
squares 6 (empty circley, and 7 (filled circles as coordination
numbers as a function of the 2D densitly) Fraction of dislocation
pairs(filled circles, free dislocationgempty squaresand free dis-
clinations(empty circle$ as a function of the 2D density.
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0.75 0.80 0.85 1.00 1.06 1.10 1.15

supports an isostructural solid-solid phase transition only
when that width is small relative to the disk diameter. To

examine the influence of the attractive well of the Marcus-

Rice potential on the phase diagram of the quasi-two-a
dimensional system, we carried out simulations in which that
part of the interparticle potential is deleted. The resulting

potential is everywhere repulsive and, for the region 1.00
<r*=<1.04, rather soft. Consequently, it is not obvious that

the system with modified Marcus-Rice interactions can sup-
port an isostructural solid-solid transition and a hexatic

phase.

TABLE |. The phase boundaries for the Marcus-Rice potential
and for the modified Marcus-Rice potential, fof =1.0 andH
=1.20.

2D density
Phase Marcus-Rice potential Modified Marcus-Rice potential
Solid 0.900 0.890
Hexatic 0.880-0.870 0.870-0.860
Liquid 0.850 0.840

B. Transitions in the solid phase:
Small lattice distortions and buckling

We now examine the distribution of lattice spacin(tjse
nalysis is in three dimensiondor the density range

3.5
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25}
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<
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5 . , A .
0.70 0.80 0.90 . 1.00 1.10 1.20
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FIG. 13. Heat capacity at constavtandH as a function of the

2D density for the modified Marcus-Rice potential.
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thermal pressure coefficients as a function of the 2D density for thand orientationalempty trianglesorder parameters as a function of
modified Marcus-Rice potential. the 2D density for the modified Marcus-Rice potential.

1.050<p*=<1.140(Fig. 17 and the distributions of lattice , ,
spacings in the density ranges 0.84%" <1.040[Fig. 18a)] Although _the prece_dlng observations suggest the occur-
and 1.156<p* <1.180[Fig. 18b)]. The latter two distribu- "€nce of a first order isostructural phase transition between
tions are unimodal, whereas that for 1.856* <1.140 is two solid phases, Qach of which has triangular Igttlce sym-
bimodal. We find that the distribution of the local orienta- Metry, a different picture emerges when we examine the con-
tional order parameter in the coexistence region is unimoddigurations of the two “phases” projected on tixg plane

and very narrow, with a peak value of 1.00, and that the(Fig. 20. This projection clearly shows that the long and
global translational and orientational order parameters in thghort lattice spacings are not ordered, and that no phase sepa-
coexistence region have values in the ranges 0.983-0.99ation has occurred. To verify that the configuration dis-
and 0.990-0.996, respectively. Analysis of the distributionplayed is not that for a system trapped in a local minimum,
of the absolute orientations of the Voronoi polygos-  we have carried out a simulation fp¥ = 1.090 starting with
played in Fig. 19 reveals that it is very narrow and unimo- a configuration that has separated phases. Specifically, in this
dal. We infer that the structural transition we have observedhitial configuration the “high” and “low density” solid
affects only the magnitude of the nearest neighbor separatigshases occupied different regions, with the particles placed
i.e., the two phases have the same orientation with respect &t a heightz that corresponds to the maximum of the height

a space fixed axis. In one phase the value of the nearedistribution atp*=1.090 with an ordered linear buckled
neighbor separation is centered at the minimum of thestructure. The simulations were carried out twice, once with
Marcus-Rice potential, whereas in the other phase the nearet@he step equal to 5 10”4 and once with time step equal to
neighbor separation varies in the range 1010<1.035as 1x10 °. In both cases the final configuration after 10
the two-dimensional density increases. Note that 15070 X 10° cycles was a single phase with a disordered distribu-
<1.035 is just the range af* which corresponds to the
slowly varying part of the repulsive component of the
Marcus-Rice potential.
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070 080 050 NG/A 100 110 120 FIG. 17. The lattice spacing distribution for 2D densities 1.050—

1.140 (shown with equal interva)s p* =1.050 is the distribution
FIG. 15. The global translationdfilled circles and orienta- that has the dominant peak at the lattice spacing that corresponds to
tional (empty triangles order parameters as a function of the 2D the minimum in the Marcus-Rice potentidll.09, while p*
density for the modified Marcus-Rice potential. =1.140 has the major peak around a lattice spacing of 1.01.
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FIG. 20. Lateral arrangement of the sh@gtay lines and long
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therm for the coexistence region. Our simulation results re-
veal a plateau in neither the lateral nor transverse pressure-
density isotherms in the range for which the behavior
described above existsee Fig. 21 Moreover, we find that

the constant volume heat capacd@y, ; (Fig. 3) and the lat-

eral thermal pressure coefficiensig. 4) of the model sys-

tem with the full Marcus-Rice potential exhibit singularities
nearp* = 1.050, and that the energy per particle distribution

is unimodal(Fig. 22 for the density range associated with
the transition. Taken together, these observations suggest the

tion of the two different lattice spacings. Indeed, this conclu-occurrence of a continuous phase transition between the

sion is consistent with Landau theofgotwithstanding the
guestionable applicability of that theory to two dimensional

identified solid phases.
Given that there are two configurations of the particles

system$ and the character of the isotherms for our modewith different average nearest neighbor spacings, why is
system. Landau theory predicts that coexisting phases witthere not a separation of the assembly of particles into two
the same symmetry are connected by a first order transitiolistinct phases? We attempt to answer this question by not-
hence there should be a plateau in the pressure-density is®\g that, taking advantage of the short range of the interac-

600.0 |

400.0 |

Relative intensity

200.0

0.0
-30.0 -20.0 -10.0 0.0

angle

20.0

30.0

tion between particles, the potential energy of our model
system can be represented in the form

: N
U=3 2}: u(rij)+21 Uexd(Zi), (3.9

where the second sum of the first term goes over only the
nearest neighbors of particieSince the particles in the sys-
tem form a single sheet the nearest neighbor connectivity is
two dimensional, even if that sheet crumples. Then, for a
specified distribution of number of nearest neighbor spac-
ings, the potential energy of the model system is the same
whether the particles are partitioned into aggregates which
are homogeneous with respect to nearest neighbor spacing or
are thoroughly mixed with respect to nearest neighbor spac-
ing. Accordingly, with the stated constraint, the spatial ar-

FIG. 19. The orientation of the Voronoi polygons for 2D densi- rangement of nearest neighbor separations will be deter-

ties 1.050—1.140, as defined in Eg.13.

mined by maximizing the entropy of that arrangement.
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FIG. 23. Root mean square of the displacement ofztbeordi-
nate from the midplane of the cell as a function of the 2D density.

150.0 |
At the same density at which the distortion of the trian-

gular lattice which we associate with the structural transition
begins, the particles begin to be displaced from the midplane
z*=0, and there is a marked increase ifp{dp);. The
former feature is evident in the dependence of the root mean
square displacement of the particles fratr=0 (Fig. 23. In
Fig. 24 we show the density profile along tkeaxis for
several average system densities in the range &40
<1.180. Whenp*<1.040 that density profile is sensibly
uniform, there is only one phase present in the cell and the
symmetry of the packing in thgy plane is hexagonal. At
very high average system densitigsz 1.140, the density
FIG. 21. Lateral pressuré) and transverse pressufle) as a  profile along thez axis has peaks adjacent to the walls of the
function of the 2D density for the full Marcus-Rice potential. cell, and there is only one out of plane phase. For densities in
the range 1.058 p* <1.140 there is a continuous transition
between those two limiting situations with both components
present at all intermediate densities.
It is interesting that the onset of the triangular distortions
gins with out of plane motion and finishes with the transi-

100.0 |

po/e

500 |

When we carried out the simulation without the attractive
part of the interparticle potential, the distribution of the lat-
tice spacing was unimodal for all the densities that corre
spond to the solid phase. Moreover, in this case neither thge

heat capacity, v (Fig. 13 nor the thermal pressure coeffi- .
cients (Fig. 14 exhibit any singularities aside from those tion to the ordered buckled phase. That transition occurs near

* — H i _
corresponding to the buckling transition, indicating that therd’ ~ 1'150.’ at which density the constant volume heat capac
was no distortion of the triangular lattice. ity can (Fig. 3 and the lateral and transverse thermal pres-
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FIG. 22. Distribution of the total energkinetic plus potential FIG. 24. The density distribution as a function of the height in

of the particles for the 2D densities 1.06Empty diamonds 1.090 the cell for 2D densities 1.04Gfilled circles, 1.090 (empty
(filled circles, and 1.120empty squares squarep 1.140(empty diamonds and 1.180empty circles.
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FIG. 25. Lateral configuration of ufz>0, filled circleg and
down (z<0, empty circley particles for the 2D density 1.140.
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FIG. 27. The number of nearest neighbors with the same sign of
the height(z) coordinate as a function of the 2D density.

=1.140 there are small regions of linear and zigzag buckling,
but they are not ordered with respect to each other, whereas
whenp* = 1.160 there is an ordered phase of linear and zig-
zag buckling that has a broken symmetry with respect to
twofold rotation. As already mentioned, the nearest neighbor
connectivity is two dimensional even when the particles are
in the buckled phase, so one can still construct the Voronoi

sure coefficientdFig. 4 show singularities. However, the polygon in two dimensions to determine the number of near-
lateral and transverse pressure-density isotherms are contingst neighbor¢NNs). This number is six for all the particles
ous (see Fig. 2], signalling again the occurrence of a con- jn the high density region, but as the particles start to move
tinuous phase transition. Clearly, the system has undergonegyt of the plane, one can count how many of those nearest
transition from a quasi-two-dimensional hexagonal solid to g ejghbors move with this particle in the same direction. An
buckled solid. This bUCkling transition was observed in bothuncorre|ated Configuration is generated when half of the
of the SyStemS Studied, i.e., with the full Marcus-Rice poten'nearest neighbors move with the tagged partide, while com-
tial and with the modified Marcus-Rice potential. Figures 25p|ete correlation is generated when there are just two nearest
and 26 display the lateral structure of the buckled phase fofeighbors, thereby forming linear or zigzag buckling. In Fig.
p*=1.140 and 1.160, respectively, for the system with thez7 we show the average number of nearest neighbors to a

Marcus-Rice potential. The figures show that whgh

FIG. 26. Lateral configuration of u@>0, filled circles and
down (z<0, empty circle particles for the 2D density 1.160.

particle, all with the same value af, as a function of the
two-dimensional density. We notice that whef =1.040
there are close to three nearest neighbors per particle, as
expected for a planar configuration of the particledere
there is no correlation in the coordinate of the NN par-
ticles). However, asp* is increased above this density, the
number of nearest neighbors per particle decreases continu-
ously to two indicating that the onset of the ordered buckling
transition starts with the lattice distortion and the out of
plane motion, but cannot proceed far because some of the
particles are still in the plane. We have monitored the inter-
play between the triangular distortion and the buckling as a
function of the sample thickned$ by carrying out simula-
tions at the constant densi = 1.150. We find that wheHl
increases sufficiently the ordered buckled triangular lattice
melts, but that ordered buckling is sustained all the way to
melting. Moreover, the distortion of the triangular lattice oc-
curs with the buckled phase present. After melting the sepa-
ration of the system into two layers persists, and a bilayer,
separated by a small diffusive region, is formed whén
>2. We thereby infer that a necessary condition for ordered
buckling to occur is formation of a complete out of plane
arrangement. We also conclude thatthsncreases the or-
dered buckling transition will occur at lower densities, i.e.,
the excess free energy for attaining the out of plane configu-
ration decreases, and there is a péatriple poin} at which
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the in plane triangular lattice becomes unstable with respedolid to an ordered buckled solid phase; the latter phase is
to the buckled phase just as is the case for hard spherasable up to close packing. Ad is decreased below about
between smooth hard wall89]. 1.50, the densities at which the liquid-to-hexagonal solid and
We note that for both the Marcus-Rice and modifiedthe hexagonal solid-to-buckled solid transitions occur in-
Marcus-Rice potentials the global translational order paramcrease, and the hexagonal solid-to-buckled solid transition
eter exhibits a small minimum gt* =1.150, which we in-  yanishes whenH=o. When the plate separation is
terpret as arising from the_ occupation of the particle§ of the_ 1.20, which is the value appropriate for comparison with
free volume that is accessible to them. At lower densities, thgyr simulations, the difference in densities of the unbuckled
particles are fully or partially in the midplane, and for all 5304 puckled phases is very small. Wss increased from the
values ofz the projected triangglar symmetry on the mid- |ower to the upper end of the range<H<1.577, the den-
plane is preserved. When buckling occurs, the particles havgy interval in which the buckled solid phase is stable grows
less space to move in the vertical direction but the accessiblg; e expense of that of the two-dimensional hexagonal solid
Ia_teral volume(above the miq plane_ of the_ cgll for particles phase, up téi = 1.57, where there is a triple point between
with >0, and below for particles wita<<0) is increased, SO the fluid, hexagonal two-dimensional solid and buckled solid

the projected triangular symmetry can then accept small disphases. For larger values off, the hexagonal two-
tortions, and even rows of up and down particles can mov@imensional solid phase is unstable.

slightly with respect to one another. This increase in lateral ag already noted, our simulations correspond o
accessible volume will be a maximum for the lowest two-_ 1 5, For this value ofH the hexagonal solid-to-buckled
dimensional(2D) density that supports ordered buckling; in ¢qjiq transition in the hard sphere system occurspt
our case that corresponds to the denpity=1.150. =1.17, very close to the valup* =1.150 for the system

with the Marcus-Rice potential and the modified Marcus-
IV. DISCUSSION Rice potential. If the density difference between the unbuc_k-
led and buckled phases for a system with the Marcus-Rice
The simulation studies reported in this paper were underpotential is as small as it is for a hard sphere system, the
taken to test the inference that a quasi-two-dimensional syssombined effects of statistical error and density interval sam-
tem of particles with Marcus-Rice-type pair interactions will pling in our simulations is likely sufficient to mask the first
support first order liquid-to-hexatic and hexatic-to-solid order character of the transition between these phases.
phase transitions. Our results show that this inference is cor- We now consider the isostructural solid-to-solid transition
rect; for the isotherm withT* =1, these phase transitions in the system with the Marcus-Rice potential. The unusual
occur sequentially as the density is increased frpin  feature associated with this transition is that, in the coexist-
=0.850 to 0.900. On the other hand, the inference whickence region, the low density phase has a fixed lattice spacing
follows from the work of Bladon and Frenkel and Chou andbut the high density phase has a lattice spacing that decreases
Nelson, that the existence of the first order liquid-to-hexatiaccontinuously with increasing density. We note that the par-
and hexatic-to-solid transitions is coupled to the existence oficle spacing in the low density phase corresponds to the
a first order isostructural solid-to-solid transition, is found minimum in the Marcus-Rice potential, and the density de-
not to hold. A model system in which there are Marcus-Ricependent particle spacings in the high density phase corre-
type pair interactions does support a solid-to-solid isostrucspond to points on the softly repulsive part of the Marcus-
tural transition in the density range 1.05p* <1.140, but Rice potential. In a conventional first order transition, the
that transition is found to be continuous. Moreover, a modehverage density in the coexistence region fixes the amounts
system in which there are modified Marcus-Rice-type paitof each phase since the densities of these phases are not
interactions, without any attractive component, exhibits firstdependent on the average denditige lever rulg. In our
order liquid-to-hexatic and hexatic-to-solid transitions in thecase, in the coexistence region the phase with particle spac-
density range 0.848p*<0.890 even though that system ing equal to the minimum in the Marcus-Rice potential has a
does not support a solid-to-solid isostructural transition. Fifixed density, and the remainder of the space is taken up by
nally, we have observed that both model systems studiedhe other, higher density, phase. The two phases are isostruc-
with and without an attractive component in the pair interac-tural both because there is insufficient room for rearrange-
tion, support a buckling transition when the density is greatement of the particles, and because hexagonal packing is the
thanp* =1.150. most efficient of all possible particle packings in the plane.
We now examine some of the features of the structural We interpret the observation that the particle spacing in
changes associated with the observed structural transitionthe higher density phase adjusts to accomodate to the space
We consider, first, the high density buckling transition. A available as follows. The Marcus-Rice potential, although
transition of this type has been shown to occur in a system ofverywhere continuous, has a relatively sharp ‘“corner”
hard spheres confined between parallel pla888. The in-  where the soft repulsion merges with the attractive well. A
formation concerning the system of hard spheres confinedimilar corner exists in the model potential which has a hard
between parallel plates which is pertinent to us is for thecore plus a narrow finite height step repulsion. For the latter,
domain in which the separation between the plates is in thé is known that when the width of the step repulsion is small
rangeoc<H<1.57¢. In this domain the low density stable compared to the hard core diameter, the potential supports an
phase is the liquid. For any fixed valueldf as the density is isostructural solid-to-solid transitiof#0,14]. We expect the
increased the liquid undergoes a first order transition to @orner in the Marcus-Rice potential to play a similar role in
hexagonal two-dimensional solid. Further increase in theleanly separating the potential energy surfaces of the high
density generates a first order transition from the hexagonalnd low density phases. It is plausible that the higher density
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solid supported by the Marcus-Rice potential will be veryimplies that all of the thermodynamic properties of the sys-
much more compressible than the low density solid becausem are functions of the strength of the external field. Sup-
of the difference between the responses to displacemepibse the system is contained in a rectangular boX, IT,
along the soft repulsion in the rangesr* <1.040 and dis- andV are held constant, the field strength determines the
placement in the potential well in the range loG4dr* area in thexy plane,A, and the height in the direction, H.
<1.060. Alternatively, one can work with the variablésandH in-
Arguably the most interesting inference which can bestead of the volume and the field strength. Moreover, in the
drawn from our simulation results concerns the influence opresence of an external field along thaxis we must con-
motion in thez direction on the character of the isostructural sider separately the variation of the thermodynamic proper-
solid-to-solid phase transition. Although both the strictly ties of the system parallel t» (the transverse compongnt
two-dimensional simulation studies of Bladon and Frenkeland in thexy plane(the lateral componentWe note, as an
and the analytical theory of Chou and Nelson appear to agxception to the preceding statement, that the heat capacity
count for the phase transitions we find in the density rangeat constant volume and field strength does not have different
0<p*=<1.140, the fact that the associated isostructural solidtransverse and lateral values since it is equivalentatq .
to-solid transition is required to be first order is not in agree-We also note that because the thermodynamic potentials of
ment with our results. Moreover, we find that the continuoushe system depend on the strength of the external field, which
isostructural phase transition in the density range 1.050epresents an extra degree of freedom, the Gibbs phase rule
<p*=<1.140 involves displacement of the particles in the assumes the form
direction, and that the isostructural character of the transition
is achieved because the projection of the positions of the
particles withz# 0 on the median plane retains the triangular f=3-p+c, (A1)
symmetry of the low density phase. Then the predicted be-

havior of a strictly two-dimensional system is retained in awheref' th ber of d f freedomis th b

guasi-two-dimensional system via exploitation of motion in foh IS engl:mtherrf m(te)g:ee%s omreen anS The number

the z direction. An analogous situation occurs in the analysis0 phases, andis the humber of components. 1hen, ina one
gomponent system, there can be a point where four phases

of the phase diagram of Langmuir monolayers, modeled a exist a line of a coexistance between three phases. etc
rods attached at one end to the water surface. Kaganer afgexist al XIS phases, '

co-workerq41] showed that a strictly two-dimensional Lan-
dau theory analysis of the Langmuir monolayer phase dia- 1. Lateral and transverse pressures

gram, based on the assumption that one-dimensional crystal- .
lization in the monolayer is stable so that order parameters 1he expressions for the lateral and transverse pressures
can be assigned for that crystallization in thandy direc-  an be derived either from mechanics or from thermodynam-

tions, accurately reproduces all the characteristic features offS: The mechanical treatment was introduced by Clausius
served. However, one dimensional crystallization is absofor homogenous systenid2]. Consider the equations of mo-
lutely unstable in two dimensions, but is stable in threelion in thexy plane of a particle with mass and with center
dimensions. Since a number of the phases of a dense Langf mass coordinates andy, subject to a force whose com-
muir monolayer differ by virtue of the tilt of the rodlike Ponents arex, and 7y :
molecules relative to the normal to the surface, changes of

o : . d?x
phase_necgssan!y involve some motion by the molecules in m—— =%, (A2a)
the z direction, with the projections of the molecules on the dt
Xy plane constrained to satisfy the packing symmetries of the
phases. As in the study reported in this paper, exploitation of )
motion in thez direction preserves the essential character of m d_y =F (A2b)
the predicted two-dimensional behavior. We suspect that in dt? ye

the real three-dimensional world, where realizations of two-

dimensional systems always involve some coupling with the

third dimension, the behavior we have found will be com-Multiplying Eq. (A2a) by 3x, Eq. (A2b) by 3y, and sum-
mon. ming over all theN particles in the system, yields
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N
2, 2
=1 (Uxi+vyi)

(]:xixi+-7:yiyi)- (A3)

N| =
Mz

i=1

APPENDIX: PRESSURES

AND THERMAL PRESSURE COEEEICIENTS wherev, andv, are the components of the velocity vector in

the x andy directions. Note that this equation describes the
The existence of an external field along tkeaxis,  motions of theN particles in thexy plane for all values of.
whether symmetric about=0 as in our case, or asymmetric, Integration over time from 0 te yields
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zj au(r)

rij ar (AlO)

N N
2
=1 j>i

1 /& 1
:T§m<2 <Ui+”3i>> =3
0 i=1

ij

N . .
= It F The transverse pressure can be calculated in a more direct
2\~ (FxXi+ FyYi) |- form since we know the external field in tledirection,

N

(A4) 1N  Iexd(2) 1 3 IUex((2)

For a system in equilibrium, the left hand side of this equa- Y Z’l ‘ooz =z, 2A=1 oz 2=z

tion is zero. The second term on the right hand side is the (A11)
lateral virial with a negative sign, which can be written in

terms of internal forceébetween the moleculgand external Combining the expressions for the lateral pressure and the
forces (stresses across the boundaries of the syst@ime  transverse pressuf&g. (A9)], and lettingp,=p;=p andh
stress per unit area is the lateral pressurelSfs a surface —H, we recover the homogeneous case pressure

element of the lateral boundary surfake, andn, andn,

are the directions of the outward normals in tkeand y

directions, the contribution of the external forces to the virial pV=NkgT+3(W). (A12)
is %p|ff2i(nxx+ n,y)dS. Using Green’s theorem, this sur-
face integral can be rewritten as a triple integral over theThe internal virial W is W=W+W,=

volume of the system, and we need to evaluate the stress%ziN:lgj!\Lirij[au(r)/ar]h:r___ SettingH=1 (h=0) so
ij

along the entire heighH. The internal virial can be ex- thatV=A in Eq. (A7) gives the pressure in two dimensions,

pres_sed as th(_a sum over pairs Qf particles of the radial d‘?ﬂ/hich has units of force per unit length, whereas the trans-
rivative of the interparticle potential, verse pressuréA9) goes to infinity.

2. Thermal pressure coefficients
N

1 Xi2j +inj au(r) Expressions for the thermal pressure coefficients can be
3 2 2 T T | obtained by differentiation of EqgA7) and (A9) with re-
=1 0 ' r=rj; spect to the temperature at constanandH. If we use the
(A5) canonical ensemble, then those quantities can be calculated
from the cross correlation between the fluctuations in the
=—pV+W, (A6)  Potential energy and the corresponding virials:
whereW, _is the internal Iateral_ vir_ial_. From th? eql'{lipartition (’9<WI>) :iz (SW8U), (A133)
theorem in the thermodynamic limitN(— o), szizl(in aT AH.N kgT
+v§i)= NkgT, which leads to the following expression for
the lateral pressure: (’9<Wt>) :LZ (W SU). (A13b)
aT AHN kgT

p|V:NkBT+<W|>. (A?)

. For th nonical ensemble, we fin
The calculation of the transverse pressure follows the or the canonical ensemble, we find

same procedure. We find that ap, (SUSW)
1 N 1/ N E)AHEV':V Nkg+ W) (Al4a
2 )
§m<21 vzi>=—§ <21 (fzizi>>. (A8)
) ) By (N ZHOW)
The transverse virial also has internal force and external oT AHZ%_V Bt kgTZ | ( )

force contributions. The transverse boundary surfack;is

=2A, but since in our model system there is no periodicwe now use the transformation of fluctuations between en-

boundary condition in the direction, nor is it the case that sembles derived in Ref38] to rewrite these expressions for
the particle diameter is much smaller thidnthe transforma-  the microcanonical ensemble:

tion to a volume integral yield¥’=Ah. We then find, for

the transverse pressure, 1 Nkat 2Cp { SUW) ALS
Y= V B 3ké-|-2 y ( a)
V' =NkgT+2(W,), A9
Pt B W (A9) 1 ( . 4CA,H<5U5Wt>) a5
Nn=ygr T a2tz
where the internal transverse virial is Y 8 3k§T2
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