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Statistical mechanics of dimerizations and its
consequences for small systems†

Ronen Zangi ab

Utilizing a statistical mechanics framework, we derive the expression of the equilibrium constant

for dimerization reactions. An important feature arising from the derivation is the necessity to include

two-body correlations between monomer’s number of particles, reminiscent to those recently found

crucial for binding reactions. However in (homo-) dimerizations, particles of the same type associate,

and therefore, self-correlations are excluded. As a result, the mathematical form of the equilibrium

constant differs from the well-known expression given in textbooks. For systems with large number of

particles the discrepancy is negligible, whereas, for finite systems it is significant. Rationalized by collision

probability between monomers, the bimolecular rate for dimer formation is proportional to

concentration the same way correlations are accounted for. That is average of squared, and not square

of averaged, monomer concentration should be considered in such a way that inconceivable collisions

between a tagged particle with itself are excluded. Another consequence emerging from these two-

body correlations, is an inhomogeneous function behavior of system’s properties upon scaling-down

the system to a regime smaller than the thermodynamic limit. Thus, averages of properties observed at

small systems are different than those observed at macroscopic systems. All predictions are verified by

Monte Carlo and molecular dynamics simulations.

Introduction

Many, if not all, physical laws formulated for chemical reac-
tions are deduced from macroscopic observations. A named
example is the relation between the rate of an elementary
process and concentrations of the participating reactants.1

As an underlying principle in chemical kinetics, this laid the
foundation of another paramount example, the discovery of the
law of mass action,2 wherein the equality between the forward
and backward rates at equilibrium was demonstrated. In its
turn, the law of mass action was linked to one more central
concept in chemistry, the equilibrium constant,3 K. A case in
point, to determine K for the following binding reaction,

A + B " AB, (1)

the average concentration, at equilibrium, of the product and
that of each of the reactants are obtained and then the ratio
hcABieq/(hcAieqhcBieq) is computed, where the brackets indicate

either an average over measurement time or an ensemble
average. This expression of K and the corresponding definition
of the rate constant of the forward reaction, kfw = hfw-rateieq/
(hcAieqhcBieq), have been working faithfully for several genera-
tions of chemists without raising any suspicion they might be
only special cases applicable for large enough systems.

Yet with recent advancements of technology, experimental
studies, able to conduct and monitor associations of the type
shown in eqn (1) in systems with small numbers of reactants,
reported that bound products are observed at higher concen-
trations than predicted by the expression of K mentioned
above.4–12 Different explanations were put forward that
include conformational changes of the unbound molecule(s),
non-fluorescent bindings, and missed events due to transient
interactions.13,14 Several theoretical studies proposed that small
systems, attributed to be stochastic in nature, are characterized by
equilibrium constants different than that observed for a macro-
scopic system, which attributed to be deterministic.15–22 Size-
dependent equilibrium constant was also advocated by introdu-
cing ‘nanoconfinement entropic effects on chemical equilibrium’
applied only to systems with small number of molecules.23,24

Other computational works also reported deviations of the
bound product’s concentration from that anticipated by
the above-mentioned expression of K.25,26 In these cases, the
anomalous behavior was explained by artefacts due to applica-
tions of periodic boundary conditions in finite simulation
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boxes27–29 or due to neglected concentration fluctuations in
small simulations in the canonical ensemble.30,31

In tackling this issue, we recently argued32 that any intensive
property related to a two-body interaction (such as the concen-
tration of the bound product AB in eqn (1)) changes its average
value upon scaling-down homogeneously the size of the system
(i.e., scaling all extensive parameters specifying the system by
the same factor) to, or within, a regime outside the thermo-
dynamic limit. The reason for this, unlooked for, behavior
is the existence of two-body correlations in the system, and
the known expressions of the equilibrium- and rate-constants
mentioned above should actually take the form of (hereafter, we
omit the subscript ‘eq’ indicating averages are taken at equili-
brium conditions) K = hcABi/hcA�cBi and kfw = hfw-ratei/hcA�cBi.
In both cases it is the average of the product, and not the
product of the averages, of reactants’ concentrations that need
to be considered. It is likely this concept has been overlooked in
the literature because in all statistical-mechanics textbooks,33–35

the ensemble constructed to derive K ignores fluctuations in the
numbers (or densities) of the chemical components, and thereby,
can yield an expression valid only for the thermodynamic limit.
Accordingly, works in the literature that followed ignored these
correlations in reactants’ concentrations when calculating K.36–45

Girded with knowledge of the mathematical form of K and
kfw for the reaction in eqn (1), it seems only trivial to write down
the corresponding expressions for the following dimerization
reaction,

2A " A2, (2)

where reactant B in eqn (1) is substituted with another reactant
of A in eqn (2), as,

K 00 ¼
cA2

� �
cA2h i � c

+; (3)

for the equilibrium constant, where for consistency with the
definition of K stated in eqn (5) below we multiplied the ratio
by the standard concentration c+ and as,

k00fw ¼
hfw-ratei
hcA2i

; (4)

for the bimolecular rate constant. That said, it appears uncons-
ciously that the way chemists, including the writer of these
lines,32 practice chemistry is deeply rooted in the behavior
of macroscopic systems. More concretely, the expressions in
eqn (3) and (4) are incorrect, and although for systems with
large number of particles the errors are negligible, at finite
systems they are significant. Indeed, correlations between
reactant’s particles ought to be accounted for in these expressions.
In the binding reactions of eqn (1) the correlations are between
two different types of particles and the term hNA�NBi, or alter-
natively hcA�cBi, properly counts these two-body correlations.
However, in eqn (2) the correlations are between the same type
of particles and a term of the form hNA

2i, or hcA
2i, counts not only

correlations between different particles of A but also correlations
of a labeled particle with itself. These latter NA self-correlations are
irrelevant for two-body interactions and should be subtracted to

yield a term proportional to hNA(NA � 1)i or hcA(cA � 1/V)i.
Nevertheless, this subtraction is not performed actively but
emerges naturally when deriving K as shown below.

Results
I. Derivation of the equilibrium constant for dimerization

We consider the dimerization process shown in eqn (2) to take
place in the gas phase, where the behavior of all components is
assumed ideal. This means except of the reaction described, the
particles do not interact with one another and no higher-order
clustering occurs. The equilibrium constant, K, is defined by,

K = e�DG+/RT, (5)

where DG+, the standard Gibbs energy change of the reaction,
is the change in Gibbs free energy when one mole of A dimerize
with another mole of A to form one mole of A2, under condi-
tions in which both the reactant and product are at their
standard state of temperature and (partial) pressure. For all
gases, almost always, same values of temperature and pressure
define the standard state. Instead of a standard pressure we will
often indicate the corresponding standard concentration, c+.
Although reported per mole of dimer formation, DG+ is
usually measured for a different (yet macroscopic) number of
particles. Given the volume of this reference system, V+, the
number of dimers formed in a complete transformation of this
reference reaction is N+

A2
� N+ ¼ c+V+.

For convenience, we choose to perform our derivation in the
canonical ensemble. However in contrast to the binding reac-
tion in eqn (1), the canonical ensemble for dimerization can
not connect directly monomers at standard conditions to
dimers at the same standard conditions. If the volume on both
side of the chemical equation in eqn (2) is the same, the
pressure and thereby concentration of the 2N+ monomers will
necessarily be twice those of the dimers. To rectify this situation,
the reaction ought to start with a system of monomers in double
the volume, thus 2V+, where the pressure and concentration
have their standard values, followed by a reversible isothermal
compression to a volume of V+. The work of this hypothetical
compression,46

W reversible
P+;2V+!2P+;V+ ¼ �2N+kBT ln

V+

2V+
; (6)

should then be accounted for when calculating DG+ (see Fig. 1).
To put it another way, this additional compression step had to be
introduced when utilizing the canonical ensemble because the
stoichiometric coefficients of reactant and product in the dimeri-
zation reaction (eqn (2)) are not equal, whereas the conditions, in
particular the pressure (or concentration), defining the standard
states are the same.

Once the 2N+ monomers are compressed to V+, we pro-
ceed to describe the dimerization in the canonical (N+, V+, T)
ensemble. Upon the formation of one dimer, the energy of the
system changes by an amount of e (i.e., e o 0). Owing to the
ideal behavior of the chemical components, the (interparticle)
energy states of the system are uniquely defined by the number
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of dimers, NA2
R i, and the canonical partition function of the

reference system can be written as,

Q+ ¼
XN+

i¼0

q+A

� �2 N+�ið Þ

2ðN+ � iÞ½ �! �
q+A2

� �i
i!

; (7)

where the number of monomers, NA, equals 2(N+ � i). As it
should, the sum in eqn (7) takes into account all possible
energy states of the system. q+A is the single-particle partition
function of one monomeric particle (which includes only

summation over internal energies) and q+A2
is the pair-particle

partition function of one dimer A2 (incorporating the exponen-
tial e�be). These partition functions can be expressed in differ-
ent forms and are described in details in the ESI.† Because the
particles are indistinguishable, the factorials in the denomina-
tors of eqn (7) correct the over-counting when raising the
single/pair partition functions to the power of the particle
numbers. Utilizing Q+, we calculate the Helmholtz free energy

change, DFcanonical
0!N+ , for the formation of N+ dimers (i.e., at a

concentration of c+) from 2N+ monomers (at a concentration
of 2c+). The superscript ‘canonical’ denotes this free energy
change is calculated only for the process at constant volume.
This change in Helmholtz energy is obtained from the ratio of
the probability to find all particles in the system as dimers, pA2

(i.e., the fraction of the state i = N+ in the sum of eqn (7)),
to the probability to find all particles as free monomers,
p2A (the fraction of the state i = 0),

DFcanonical
0!N+ � Fcanonical

i¼N+ � Fcanonical
i¼0 ¼ �kBT ln

pA2

p2A

¼ � kBT ln
q+A2

� �N+

N+!
�

2N+
� �

!

q+A

� �2N+

2
64

3
75;

(8)

where kB is Boltzmann constant. The corresponding Gibbs free
energy change is then,

DGcanonical
0!N+ ¼ DF canonical

0!N+ þ V+DPcanonical
0!N+

¼ �N+kBT ln
q+A2

q+A

� �2 � kBT ln
2N+
� �

!

N+!

þ V+DPcanonical
0!N+ ; (9)

where DPcanonical
0!N+ is the change in the pressure of the system

accompanied the dimerization reaction at constant volume.

To get DG0!N+ , we add DW reversible
P+ ;2V+!2P+;V+ (as computed in

eqn (6)) to DGcanonical
0!N+ , and continue by applying Stirling’s

approximation to the numerator and denominator of the
second term on the right hand side of eqn (9), that means
requiring the reference system to be large,

DG0!N+ ¼ DW reversible
P+ ;2V+!2P+;V+ þ DGcanonical

0!N+

¼ �N+kBT ln
q+A2

q+A

� �2 þ lnN+

2
64

3
75

þN+kBT þ V+DPcanonical
0!N+ :

(10)

Substituting N+ with c+V+, and noting for ideal gases the

term V+DPcanonical
0!N+ equals �N+kBT,

DG0!N+ ¼ �N+kBT ln
q+A2

.
V+

q+A

.
V+

� �2 þ ln c+

2
64

3
75: (11)

We now evaluate the ratio of the partition functions in

eqn (11). Due to translational degrees of freedom, q+A2
and

q+A depend on the size of the system. Nonetheless assuming
‘classical’ behavior of translational energy states (eqn (SI-2.2),
ESI†), as is the case in deriving eqn (SI-1.5) (ESI†), the single-
and pair-particle partition function can be rendered size-
independent upon division by the volume. Hence if we consider
another system for the dimerization process in eqn (2), at
the same temperature T but with an arbitrary total number of
monomers, Ntotal

A , and an arbitrary volume, V, the following
relation holds,

q+A2

.
V+

q+A

.
V+

� �2 ¼ qA2

�
V

qA=Vð Þ2
; (12)

where qA and qA2
are the single- and pair-particle partition

functions of this arbitrary system. We note the validity of the
‘classical’ translation approximation diminishes with decreas-
ing temperature, mass, and volume. In Section SI-2 of the ESI†
we analyze and check the equality of eqn (12). Although for the
vast majority of molecular systems this equality seems to hold
to an acceptable degree of accuracy, there are special cases of
low molecular weight gases (such as hydrogen and helium) at
low temperatures and confined to small volumes for which the
‘classical’ approximation yields large discrepancies. Returning to

Fig. 1 Projection of the dimerization reaction of the reference system
onto an isothermal pressure–volume diagram. The figure illustrates that
in this case, connecting the reactant (2A monomers) to the product
(A2 dimers), both at standard state conditions (purple arrow), via a descrip-
tion in the canonical ensemble (green arrow) requires an additional
process in which the reactant is reversibly compressed to a volume V+

(red arrow).
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the arbitrary system, its total partition function is analogous to
that of the reference system (eqn (7)), however, we write it in a
slightly different form. The reason is that in the reference system
we assumed the total number of monomers, 2N+, to be an even
number. This is a valid assumption for the reference system
because the contribution of one particle out of an Avogadro’s
number of particles is negligible. Note also that Stirling’s approxi-
mation was applied only to the reference system, and therefore,
the arbitrary system can, in principle, be as small as possible (e.g.,
Ntotal

A equals 2 or 3). Thus, the assumption of the total number of
monomers to be an even number is not correct for the arbitrary
system. As a consequence we set Ntotal

A = NA + 2NA2
= 2N1 + d, where

N1 is the maximum number of dimers that can hypothetically
form, and d equals 0 or 1 depending on whether Ntotal

A is even or
odd, respectively. We then write the canonical partition function
for the arbitrary system as,

Q ¼
XN�
i¼0

q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �! �
qiA2

i!
; (13)

where as before, i � NA2
.

In order to proceed with the evaluation of DG0!N+ (eqn (11))
we multiply and divide the right-hand side of eqn (12) by,

XN��1
i¼0

ði þ 1Þ
2 N� � i þ 1ð Þð Þ þ d½ �!ði þ 1Þ!q

2 N��ið Þþd
A qiA2

; (14)

and obtain,

V+
q+A2

q+A

� �2

¼ V
qA2

qA2
¼ V

PN��1
i¼0

ði þ 1Þ
2 N� � i þ 1ð Þð Þ þ d½ �!ði þ 1Þ!q

2 N��ðiþ1Þ½ �þd
A qiþ1A2

PN��1
i¼0

ði þ 1Þ
2 N� � i þ 1ð Þð Þ þ d½ �!ði þ 1Þ!q

2 N��ið Þþd
A qiA2

:

(15)

We change the index of the sum in the numerator to j = i + 1
and rewrite the factorials in the denominator,

V+
q+A2

q+A

� �2¼V

PN�
j¼1

j

2 N� � jð Þþd½ �!j!q
2 N��j½ �þd
A q

j
A2

PN��1
i¼0

2 N� � ið Þþd�1½ � 2 N� � ið Þþd½ �
2 N� � ið Þþd½ �!i! q

2 N��ið Þþd
A qiA2

:

(16)

Given the form of the coefficients of the partition functions in
the sum, index j in the numerator can start from zero and index
i in the denominator can end at N1 (remembering d equals
either 0 or 1). This yields,

V+
q+A2

q+A

� �2

¼ V

1

Q

PN�
j¼0

j
q
2 N��jð Þþd
A

2 N� � jð Þ þ d½ �!
q
j
A2

j!

1

Q

PN�
i¼0

2 N� � ið Þ þ d½ � 2 N� � ið Þ þ d� 1½ � q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �!
qiA2

i!

¼ V
NA2

� �
NA NA � 1ð Þh i ¼

cA2

� �
cA cA �

1

V

	 
� �; (17)

where the sum in the numerator is the ensemble average of the
number of dimers, hNA2

i, and the sum in the denominator is
the average of the product of NA(NA � 1), both in our chosen
arbitrary system under equilibrium conditions. Inserting this
result into eqn (11) gives,

DG0!N+ ¼ �N+kBT ln
cA2

� �
c+

cA � cA �
1

V

	 
� �: (18)

Scaling DG0!N+ to one mole of formed dimer yields DG+,

DG+ ¼ NAvogadro

N+
� DG

0!N
+
A

¼ �RT ln
cA2

� �
c+

cA � cA �
1

V

	 
� �; (19)

and comparing the resulting expression to the definition of K in
eqn (5) we arrive at,

K ¼
cA2

� �
cA � cA �

1

V

	 
� �c+: (20)

Therefore as for the case of binding reaction in eqn (1), the
equilibrium constant for dimerization must include density
correlations between the unbound reactants (monomers),
however here, self-correlations are subtracted, that is, the
correlation between a tagged particle with itself. Note that if
we did not consider the reversible work for compression

(i.e., taking into account only DGcanonical
0!N+ ) the expression of

K would be the same as that in eqn (20) but multiplied by a
factor of 4.

We would like to point out two special cases. The first is the
thermodynamic limit, where hNA(NA � 1)i - hNA

2i, or alter-
natively 1/V { cA, and correlations between reactant particles
are totally lost. In this case, K00 in eqn (3) and a related
expression ignoring all correlations,

K 0 ¼
cA2

� �
cAh i cAh i

� c+; (21)

approach K in eqn (20). The second case is for the smallest
system possible, Ntotal

A = 2, where the system has only two
macroscopic states. Despite strong correlations in the system,
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the two-body average hNA(NA � 1)i reduces to a one-body
average hNAi, and eqn (20) can be written as,

KNtotal
A
¼2 ¼

f A2

2 1� f A2ð ÞVc
+; (22)

where f A2 � hNA2
i is the fraction of frames, or probability, in

which the dimer is observed. The relation in eqn (22) is valid
only when there are two particles in the system and has already
been employed by Ouldridge et al.30

II. Validation by computer simulation

To check our derivation, we consider a simple system of
Lennard-Jones (LJ) molecules able to dimerize according to
eqn (2) and let the system propagate by Monte-Carlo (MC)
and molecular dynamics (MD) algorithms. Two series of
simulations were performed. In the first, R1, we increased
Ntotal

A keeping the concentration ctotal
A = Ntotal

A /V constant,
whereas in the second series, R2, we fixed Ntotal

A = 2 and
increased V by increasing the length of the cubic simulation
box, Lbox. Detailed information on the model system and
computational methodologies are given in the Computational
details section below.

Fig. 2 displays the equilibrium constant, K, calculated by
eqn (20), together with the value of K0 (eqn (21)) and K00

(eqn (3)). As indicated by the figure, inclusion of cross-
correlations are needed in order to keep the equilibrium
constant for all simulations in both series. That means, self-
correlations, hcA/Vi, must be subtracted from the correlation
term hcA

2i. Notice, whereas K0 and K00 approach K with increas-
ing Ntotal

A in R1, they approach a different value than that of K
with increasing Lbox in R2. This is because in the former,
subtracting 1 from an increasing number of NA particles will
eventually become negligible, whereas, subtracting 1 from a
value of 2 is always significant. Furthermore, in Section SI-1 of
the ESI† we show the value of K calculated by eqn (20), for a
system with a single-site reactant, agrees almost perfectly with
that obtained by analytical calculations (Table SI-1.2, ESI†).

The expression of K in eqn (20) can also be justified from
kinetics. The rate of the forward reaction is proportional to the

collision probability between a tagged particle A1 and any other
particle Ai (where i a 1), summed over all NA particles.
This yield a collision probability that is a function of the term
hNA(NA � 1)i, thereby excluding the impossible event of a
collision of a particle with itself. Hence we write,

hfw-ratei = kfwhcA(cA � 1/V)i. (23)

The backward reaction is a simple first-order kinetics and its
rate is proportional linearly to dimer concentration. At equili-
brium, there is no change in average concentration of any of the
chemical components,

dcA2

dt

� �
¼ � 1

2

dcA

dt

� �

¼ kfwcA cA � 1=Vð Þ � kbwcA2

� �
¼ 0;

(24)

and if we define K as the ratio between forward and backward
rate constants and render its value dimensionless via c+,
we recuperate eqn (20). In fact, plotting (Fig. 3) the rate
constant of the forward reaction, kfw, defined in eqn (23),
together with k00fw (eqn (4)) which includes self-correlations,
and that ignoring correlations all together,

k0fw ¼
hfw-ratei

cAh i2
; (25)

mirrors the results presented for the corresponding expressions
of K.

III. A relation between composition and fluctuation

The main difference between thermodynamics and statistical
mechanics is that the latter incorporates fluctuations in the
values of the system’s properties. The magnitudes of these
fluctuations depend on the parameters specifying the system,
and generally, can be used to extract information on the system.
For the dimerization reaction considered here, we demonstrate
now the information that can be extracted from fluctuations is
the composition of the system. To represent fluctuations we
adopt the notation of Lebowitz et al.47 and define the cross
fluctuations between quantities z and Z as,

Fig. 2 The equilibrium constant K for dimerization defined by eqn (20) (c+� 1 M) for two series of simulations at: (a) constant ctotal
A = 0.052 M and as a function of the

total number of A particles (R1), as well as, at (b) constant Ntotal
A = 2 and as a function of the length of the simulation box (R2). Both series were performed in the canonical

ensemble at T = 300 K by Monte-Carlo (MC) and molecular-dynamics (MD) methods. The values of K0 and K00 defined in eqn (21) and (3) are also shown for comparison.
The left-most points in R1 and R2 (N�A ¼ 2, Lbox = 4 nm) represent the same system. The estimated errors for the values of K are smaller than the size of the symbols.
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L(z,Z) = hzZi � hzihZi, (26)

and their relative magnitude by,

lðz; ZÞ ¼ Lðz; ZÞ
hzihZi : (27)

We now look at the following difference in our system,

l NA2
;NA2

� �
� l NA2

;NA NA � 1ð Þ
 �

¼ 1

NA2

� � NA2
2

� �
NA2

� � � NA2
NA NA � 1ð Þ

� �
NA NA � 1ð Þh i

" #
;

(28)

and evaluate the term inside the square brackets. Utilizing the
partition function defined in eqn (13) and recalling that i � NA2

and NA = Ntotal
A � 2NA2

= 2N1 + d � 2i, the first term can be
written as,

NA2
2

� �
NA2

� � ¼
1

Q

PN�
i¼0

i2
q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �! �
qiA2

i!

1

Q

PN�
i¼0

i
q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �! �
qiA2

i!

¼

PN��1
j¼0

j þ 1ð Þ2 q
2 N��jð Þþd
A

2 N� � ð j þ 1Þð Þ þ d½ �! �
q
j
A2

ð j þ 1Þ!
PN��1
j¼0

j þ 1ð Þ q
2 N��jð Þþd
A

2 N� � ð j þ 1Þð Þ þ d½ �! �
qjA2

ð j þ 1Þ!

; (29)

where in the second equality we skipped the terms corres-
ponding to i = 0, changed the index of the summation to
j = i � 1, and multiplied and divided the ratio by qA

2/qA2
.

Similarly, we can express the second term inside the square
brackets in eqn (28) by,

NA2
NA NA � 1ð Þ

� �
NA NA � 1ð Þh i

¼

1

Q

PN�
i¼0

i 2 N� � ið Þ þ d½ � 2 N� � ið Þ þ d� 1½ � q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �! �
qiA2

i!

1

Q

PN�
i¼0

2 N� � ið Þ þ d½ � 2 N� � ið Þ þ d� 1½ � q
2 N��ið Þþd
A

2 N� � ið Þ þ d½ �! �
qiA2

i!

¼

PN��1
i¼0

iði þ 1Þ q
2 N��ið Þþd
A

2 N� � ði þ 1Þð Þ þ d½ �! �
qiA2

ði þ 1Þ!
PN��1
i¼0
ði þ 1Þ q

2 N��ið Þþd
A

2 N� � ði þ 1Þð Þ þ d½ �! �
qiA2

ði þ 1Þ!

;

(30)

where the second equality is realized by letting index i in the
sum end at N1 � 1 (again, d is a binary parameter of 0 or 1) and
rewriting the factorials. Now we subtract the second term from
the first term in the square brackets of eqn (28) by noting the
denominators of the two terms are equal,

NA2
2

� �
NA2

� � � NA2
NA NA � 1ð Þ

� �
NA NA � 1ð Þh i

¼

PN��1
i¼0
ði þ 1Þ q

2 N��ið Þþd
A

2 N� � ði þ 1Þð Þ þ d½ �! �
qiA2

ði þ 1Þ!
PN��1
i¼0
ði þ 1Þ q

2 N��ið Þþd
A

2 N� � ði þ 1Þð Þ þ d½ �! �
qiA2

ði þ 1Þ!

¼ 1; (31)

and obtain a ratio that equals one. Consequently, eqn (28)
reduces to,

l NA2
;NA2

� �
� l NA2

;NA NA � 1ð Þ
 �

¼ 1

NA2

� �; (32)

Fig. 3 Rate constants of dimerization (eqn (2)) for (a) R1 series, and (b) R2 series, obtained from MD simulations. The top panels show the rate constant in
the forward direction, kfw defined in eqn (23), whereas the lower panels the rate constant in the backward direction, kbw = hbw-ratei/hcA2

i. For
comparison, we also present k0fw and k00fw defined in eqn (25) and (4).
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or to a similar expression specifying the average concentration
of the dimer,

cA2

� �
¼ 1

l NA2
;NA2

� �
� l NA2

;NA NA � 1ð Þ
 �� �

V
: (33)

In Fig. 4 we examine the validity of eqn (33) by computing
these relative fluctuations and compare the predicted values
of hcA2

i to those obtained by direct counting of dimers. The
agreement is excellent, nevertheless, there are two points
with noticeable discrepancies. They appear in R1 series by
MD simulations for the two largest Ntotal

A values (64 and 128),
which we conjecture to arise due to insufficient simulation time
to yield accurate averages for the relative fluctuations. Note in
R1 series all extensive parameters specifying the system are
scaled by the same factor, and therefore, if average quantities of
the system were homogeneous functions then hcA2

i would be
constant. This is not the case at finite systems and instead there
is a rising divergence from a horizontal line with scaling-down
the size of the system, the same as that observed32 for the
binding reaction of eqn (1). However for (homo-) dimerization,
odd values of Ntotal

A (3 and 5) exhibit strong reduction in hcA2
i,

breaking up the continuous curve, simply because in these
cases it is unfeasible to pair all particles simultaneously
whereas for even numbers of Ntotal

A it is. Although it is clear
this odd effect diminishes with increasing numbers of particles,
these two points are the only evidence we have because other odd
numbers were not considered.

Discussion

There are two points we would like to discuss. The first concerns
the concept reported in the literature of a size-dependent equili-
brium constant. As follows from our treatment, K is a quantity
defined not for the system we have at hand but for a macroscopic
system at agreed conditions of temperature and pressure (or
concentration) as specified in eqn (5). Thus at constant tempera-
ture, it has a fixed, or constant, value regardless of the size of
system we choose to work with. It has been known for a long time
that K can be extracted utilizing other systems, for example with
different concentrations, by applying a relation such as the one
shown in eqn (21). For finite systems this relation yields different
values, yet, there is no justification to claim the value of K is now
different. One might argue that it is not possible to obtain K from
systems that are too small. Contrary to this statement, a main
conclusion of current and previous32 papers is that K can be
retrieved from a system of any size, including a system with the
smallest possible number of particles. To this end, the employ-
ment of a general relation between K and equilibrium properties
of the chosen system (e.g., eqn (20)) is required.

The second point concerns the ascription made in the
literature of small systems as stochastic, and of macroscopic
systems as deterministic, in character. It is likely this attri-
bution is not related to the forces/algorithm propagating the
system, but to the fact that if we measure a property of a small
system at different points in time we obtain different values,
whereas, for a macroscopic system the results are always almost
the same. This is obvious; an average over space, or number
of particles, in macroscopic systems is sufficient to yield con-
verged quantities, whereas, finite systems require an ensemble
large enough, or repetitive instantaneous measurements
spanned over long-enough period of time, to yield convergence.
That means, sufficient statistical data is necessary, however
even when this condition is met, it is not to say average values
obtained from large and small systems are the same. On the
contrary, and in contrast to the thermodynamic limit, another
main conclusion of current and previous32 works is that proper-
ties of chemical equilibriums involving two-body interactions
are not homogeneous functions.

Conclusions

In this paper we derive the expressions of the equilibrium
constant, eqn (20), and of the rate of the forward bimolecular
reaction, eqn (23), ought to be used in dimerization reactions of
the type presented in eqn (2). These expressions account for
cross-correlations between reactant particles and are, therefore,
different from those presented in textbooks. Nevertheless,
they do reduce to the textbooks’ well-known expressions for
large enough (macroscopic) systems. In this case, correlations
between reactant particles vanish and the contribution of self-
correlations becomes negligible. An important effect of the
underlying two-body interactions, is that in a regime outside
the thermodynamic limit (thus, for small systems), scaling
the system homogeneously will change the average values of

Fig. 4 Average concentrations of dimers, hcA2
i, for (a) R1 and (b) R2

series of simulations. Along results obtained from direct counting of the
number of dimers, we also predict the concentrations from the relative
fluctuations, l(NA2

, NA2
) and l(NA2

, NA[NA � 1]), in the system as described
in eqn (33).

PCCP Paper

Pu
bl

is
he

d 
on

 0
3 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
2/

9/
20

22
 8

:4
4:

40
 A

M
. 

View Article Online

https://doi.org/10.1039/d2cp04450a


This journal is © the Owner Societies 2022 Phys. Chem. Chem. Phys., 2022, 24, 28804–28813 |  28811

intensive properties, such as the concentration of dimer
or monomer. We further derive a relation connecting these size-
dependent concentrations to relative fluctuations in the systems.

Computational details

The model system consists of A molecules where each molecule
is represented by two sites, a and h ‘covalently’ bonded with a
bond-length of 0.25 nm as shown schematically in Fig. 5. The
role of the h atoms is to prevent any clustering of the molecules,
apart from dimer formation. All atom-sites have zero charge,
qa = qh = 0.0 e, and their intermolecular interactions are
modeled by Lennard-Jones (LJ) potentials truncated at a dis-
tance of 2.0 nm. The different s and e LJ parameters in this
system, specified in Table 1, describe essentially repulsive
interactions between all sites except for a strong attraction
between the a atoms. Based on the location of the first mini-
mum of the radial distribution function between the a atoms,
the dimeric state is defined for raa o 0.3 nm. Despite the
introduction of the protective site h in each molecule A, we did
encounter, albeit seldomly, clusters larger than two. These
higher order clusters occurred more often in the MD than in
the MC simulations, due to the flexibility of the covalent bond
in the former, with a percentage of particles involved in these
aggregates lower than 0.1% and 0.03%, respectively.

All simulations were conducted in the canonical ensemble
(Ntotal

A , V, T) at a temperature of T = 300 K. The total number of
A molecules in the system, Ntotal

A = NA + 2NA2
, and/or the volume

V of the cubic box, varied systematically within two series
of simulations. In the first series, labeled R1, we increased
Ntotal

A from 2 to 128 and, concomitantly, V such that the
concentration ctotal

A = Ntotal
A /V is constant at 0.03125 molecules

per nm3 (B0.052 M). In the second series of simulations, R2,
we considered only two molecules of A, Ntotal

A = 2, and increased
V by increasing the box length, Lbox, from 4.0 nm to 24.0 nm.

Periodic boundary conditions were applied along all three
Cartesian axes.

Both series of simulations were conducted by Monte-Carlo
(MC) and molecular dynamics (MD) techniques. The MC
simulations,48,49 which output configurations in the canonical
ensemble, were performed by an in-house code executed in
double-precision. The Metropolis acceptance criteria50 was
applied to either accept or reject trial moves. Each trial move
starts by randomly selecting one A molecule which is then
displaced, in each of the three Cartesian-axes, and rotated
around each of the two axes perpendicular to the molecular
axis. The displacements and rotations are performed as rigid
bodies. Their magnitudes and directions were determined
randomly from a uniform distribution with maximum values
of 0.4 nm for displacements along each of the Cartesian-axes,
0.1 for cos y when rotating around angle y(0 r y r p), and
0.314 rad for rotations around angle f (0 r fr 2p). These trial
moves resulted in acceptance-ratios that varied from 0.17, for
the system Ntotal

A = 2 in R1, to 0.98, for the system with Lbox =
24.0 nm in R2. The number of trial moves applied for each
simulation was inversely proportional to the size of the system.
For example the data collection stages ranged from 4 � 1012

moves for Ntotal
A = 2 to 1.25 � 1011 moves for the largest system

of Ntotal
A = 128.

The MD simulations were conducted by the software pack-
age GROMACS version 4.6.551 (single-precision). A time step of
0.002 ps was employed to integrate the equations of motion
and a mass of 10.0 amu was assigned to a and h atom sites. The
a–h ‘covalent’ bond was modeled by a harmonic potential
with bond-length of 0.25 nm and force-constant of 2 �
105 kJ mol�1 nm�2. The temperature was maintained by apply-
ing the Nosé–Hoover thermostat52,53 with a chain-length54 of
2 and a coupling strength set to 0.1. The equations of motion
were propagated by the velocity-Verlet algorithm in which the
kinetic energy is determined by the average of the two half-
steps. Equilibration time of at least 1 ms was conducted prior to
data collection for each system, whereas, the time period for
collecting data ranged from 400 ms for Ntotal

A = 2 to 29.6 ms for
Ntotal

A = 128.
To analyze the dynamics of the forward and backward

reactions we had to simulate again R1 and R2 series by MD.
However, this time the trajectories were saved more frequently;
from a frequency of every 20 steps for Ntotal

A = 2 (or Lbox = 4.0 nm)
to a frequency of every step for Ntotal

A Z 8 (R1) or to a frequency
of every 1000 steps for Lbox = 24.0 nm (R2 series). These
frequencies corresponded to, approximately, the lowest fre-
quencies for which trial calculations of the rate constants
were not affected upon an increase of the trajectory-saving
frequency. At the same time, the duration of trajectories were
shorter than those mentioned above and ranged from 12 ms for
Ntotal

A = 2 (or Lbox = 4.0 nm) to 300 ns for the largest system in R1,
or to 600 ms for the largest system in R2. To keep the size of
the trajectories manageable, each run was split into multiple
(10–60) runs. The rates of the forward and backward reactions
were calculated by counting the number of transitions per
period of time divided by V. A transition between the two states

Fig. 5 A model system for dimerization between two A molecules. These
A molecules consist of uncharged LJ, a and h, atom-sites covalently
bonded to each other. The distance of this intramolecular bond is fixed
in the MC simulations to a value of 0.25 nm whereas it oscillates around
this value, due to a harmonic potential, in the MD simulations. The
interaction between the a sites is strongly attractive, whereas the other
two intermolecular interactions are repulsive (see Table 1).

Table 1 LJ parameters between the different atom sites for a system of
A(a–h) molecules

s [nm] e [kJ mol�1]

a� � �a 0.15 47.0
h� � �h 0.85 0.1
a� � �h 0.40 0.1
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is identified when the distance between a sites of two molecules
crossed the cutoff-value of 0.3 nm. To avoid counting return-
trajectories originating from transient species in the proximity
of the transition state, we introduced a buffer-zone of 0.05 nm
on either side of the cutoff such that if a particle is already
bound, raa needs to be larger than 0.35 nm to consider a
transition, whereas if it is unbound, raa needs to be smaller
than 0.25 nm to count a transition. Nevertheless, it turned out
the effect of including this buffer zone is rather negligible.
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45 E. Duboué-Dijon and J. Hénin, Building intuition for binding
free energy calculations: Bound state definition, restraints,
and symmetry, J. Chem. Phys., 2021, 154, 204101.

46 H. B. Callen, Thermodynamics and an Introduction to Thermo-
statistics, John Wiley & Sons, New York, NY, 1985.

47 J. L. Lebowitz, J. K. Percus and L. Verlet, Ensemble depen-
dence of fluctuations with application to machine computa-
tions, Phys. Rev., 1967, 153, 250–254.

48 M. P. Allen and D. J. Tildesley, Computer Simulations of
Liquids, Oxford Science Publications, Oxford, 1987.

49 D. Frenkel and B. Smit, Understanding Molecular Simula-
tions: From Algorithms to Applications, Academic Press,
London, 2002.

50 N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth,
A. H. Teller and E. Teller, Equation of state calculations
by fast computing machines, J. Chem. Phys., 1953, 21,
1087–1092.

51 B. Hess, C. Kutzner, D. van der Spoel and E. Lindahl,
GROMACS 4: Algorithms for highly efficient, load-
balanced, and scalable molecular simulation, J. Chem. The-
ory Comput., 2008, 4, 435–447.
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chains: The canonical ensemble via continuous dynamics,
J. Chem. Phys., 1992, 97, 2635–2643.

Paper PCCP

Pu
bl

is
he

d 
on

 0
3 

N
ov

em
be

r 
20

22
. D

ow
nl

oa
de

d 
on

 1
2/

9/
20

22
 8

:4
4:

40
 A

M
. 

View Article Online

https://doi.org/10.1039/d2cp04450a


Supplementary Information:

Statistical Mechanics of Dimerizations

and its Consequences for Small Systems

Ronen Zangi*1,2

1POLYMAT & Department of Organic Chemistry I, University of the Basque Country UPV/EHU,

Avenida de Tolosa 72, 20018, Donostia-San Sebastián, Spain
2IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009 Bilbao, Spain

November 2, 2022

*r.zangi@ikerbasque.org

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2022



Statistical Mechanics of Dimerizations Analytical Evaluations of K

SI-1 Analytical Evaluations of K

The equilibrium constant of dimerization derived in the main text and expressed in Eq. 20 in terms

of ensemble average of reactant and product concentrations is now compared against two analytical

evaluations based on the single-particle, q
A
, and pair-particle, q

A2
, partition functions. To this end,

we simplify our system and model the reactants, A, only as single-site particles, thus, removing the

protecting site that prevented higher-order aggregation. To preclude the formation of aggregates

larger than a dimer, we simply restrict this test system to N
total
A = 2. We choose the a cubic

box with Lbox = 6.0 nm thus ctotal
A

= 0.00926 molecule/nm3. To render the magnitude, as well

as the location, of the first maximum of g(r) in the single-site system and in the main-model

system similar, we modified ε and σ parameters of the LJ potential to εLJ = 26.90 kJ/mol and

σ = 0.152 nm. Other simulation parameters were unchanged. The MC simulation consisted of

8 · 1012 trial moves whereas the MD simulation was run for 720 µs. The value of K obtained by

Eq. 20, for each of these simulations, is listed in Table SI-1.2.

I. K from Integration over Particle’s Coordinates

In this approach we completely separate the integrations over momenta from those over spatial

coordinates. If T is the kinetic part of the Hamiltonian, the single-particle partition function of

unbound A can be written as,

q
A

(r) =
1

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

∫
~r
A

d ~r
A

=
V

h3

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

e−βT ( ~pA )d ~p
A

, (SI-1.1)

where h is Planck’s constant and the integral over ~r
A
is of three dimensions yielding the volume when

the particle does not interact with its surrounding. If U is the potential part of the Hamiltonian and

rc the cutoff distance defining the bound state, the pair-particle partition function can be written

as,

q
A2

( ~p
A′ , ~pA′′ , ~rA′ , ~rA′′ ) =

1

h6

∫ ∞
−∞

. . .

∫ ∞
−∞

e−βT ( ~pA′ , ~pA′′ )d ~p
A′d ~pA′′

∫
~r
A′

d ~r
A′

∫ rc

0

e−βU(r)2πr2dr ,

(SI-1.2)

where we labeled the first particle A′, and the second A′′. The relative distance is defined as

r = | ~r
A′′ − ~r

A′ |, and the usual volume element for integration over this relative distance, 4πr2dr,

2



Statistical Mechanics of Dimerizations Analytical Evaluations of K

is divided by two because A′ and A′′ are indistinguishable. In addition, the spatial integration over

the coordinates of the first particle A′ gives V , thus, the equilibrium constant can be expressed as,

K =
q
A2

q2
A

V c∅ =
1

2
c∅
∫ rc

0

e−βU(r)d~r = c∅
∫ rc

0

e−βU(r)2πr2dr , (SI-1.3)

where the integrals over momenta cancel-out when taking the ratio of the partition functions.

Equation SI-1.3 can be solved numerically and the result is shown in Table SI-1.2.

II. K from a Molecular Partition Function

We now evaluate q
A2

by integrations over coordinates and momenta of the center-of-mass of

the dimer and over the relative motions therein. This is realized by writing the Hamiltonian of

the pair-particle partition function in terms of generalized coordinates and momenta that describe

translation of center-of-mass, as well as, rotation and vibration of the bound state. If the rotational

and vibrational modes are decoupled, the expression of K becomes1,

K =
qtrans(A2) · qrot(A2) · qvib(A2) · e−βε

q2
trans(A)

V c∅ , (SI-1.4)

where ε equals −εLJ/NAvogadro. In the ’classical’ approximation, where the sum over translational

states can be substituted by an integral, the translational partition function has the form,

q
classical

trans =

(
2πmk

B
T

h2

)3/2

V , (SI-1.5)

where m is the mass of the moving body. The rotational partition function of a homonuclear

rigid-rotor dimer at high-temperatures is,

qrot =
8π2Ik

B
T

2h2
, (SI-1.6)

where the moment of inertia is I = µR2
eq, µ the reduced mass, and Req = 0.1707 nm the

equilibrium bond length of the dimer. The evaluation of the vibrational partition function is normally

proceeded by an input of the vibrational frequency (or force-constant). Because the vibrations in

our dimer are actually oscillatory motions around the minimum of the LJ potential, we also apply

the high-temperature approximation in this case and evaluate the vibrational partition function by

performing numerical integration instead of discrete summation. The Hamiltonian here includes a

3
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one-dimensional kinetic term of a body with a reduced mass µ and the LJ potential is shifted by

εLJ so its minimum is at zero energy. Consequently we get,

qvib =
1

h

∫ ∞
−∞

e−βp
2/2µd~p

∫ rc

0

e−β[ULJ (r)+ε
LJ ]dr =

(
2πµk

B
T

h2

)1/2 ∫ rc

0

e−β[ULJ (r)+ε
LJ ]dr ,

(SI-1.7)

which can be easily calculated. The values of the different terms of the molecular partition function

of the dimer are exhibited in Table SI-1.1.

Table SI-1.1: The values of different modes in the molecular partition function of the dimer, along

with the corresponding monoatomic partition function and the Boltzmann’s factor, necessary to

compute the equilibrium constant of our test system (V = 216.0 nm3 and T = 300.0 K) via

Eq. SI-1.4.

q
classical

trans(A2)
qrot qvib e−βε q

classical

trans(A)

1.8866 · 107 90.103 0.36473 48261 6.6702 · 106

The comparisons between the equilibrium constant, as well as of the standard Gibbs energy

change, obtained by the four different (two simulation- and two analytical-) methods is shown

in Table SI-1.2. The agreement between the MC simulation and the numerical integration over

particles’ coordinates (Eq. SI-1.3) is almost perfect. Relative to this, the agreement of K between

the MC and MD simulations may seem compromised. However when considering the difference

between the corresponding ∆G∅, which equals 0.02 kJ/mol, the agreement is still very good,

and the mild discrepancy can be attributed to application of a thermostat to a system with small

number of degrees of freedom. By far, the largest deviation is observed when the calculation is

performed using the molecular partition function (Eq. SI-1.4) where the difference in ∆G∅ with

the other methods is in the range 0.06−0.09 kJ/mol. As we argued before2, this is not surprising

given the several assumptions made in deriving this equation, and in particular, the neglect of

coupling between vibrational and rotational modes for a bond formed by a ’soft’, intermolecular,

potential.

4
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Table SI-1.2: Comparison between values of the equilibrium constant K computed by four different

methods, for the dimerization described in Eq. 2 of the simplified model system of single-site

monomers detailed in this section. In the two simulation methods, Monte-Carlo (MC) and Molecular

Dynamics (MD), K was obtained by calculating the ratio between the product and correlated-

reactants concentration according to Eq. 20. The analytical/numerical calculations were based on

integration of the particles coordinates (Eq. SI-1.3), as well as on partition functions describing

relative motions of a homonuclear diatomic molecule (Eq. SI-1.4). In addition to the value of K,

we also display (in kJ/mol) the corresponding change in the standard Gibbs energy, ∆G∅, using

the definition in Eq. 5.

Simulations (Eq. 20) Analytical/Numerical Calculations

MC MD Eq. SI-1.3 Eq. SI-1.4

K 90.625 ± 0.005 89.73 ± 0.24 90.623 87.481

∆G∅ −11.2413 ± 0.0001 −11.217 ± 0.007 −11.2412 −11.1532
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SI-2 Limits on the Relation between Reference and Finite Systems

The relation expressed in Eq. 12 between partition functions of the reference state and those of

the arbitrary system assumes translational partition functions of monomer and dimer are linearly

proportional to the volume. This is true if these translational partition functions can be described

’classically’ as considered in Eq. SI-1.5. For macroscopic reference systems this assumption is

clearly valid. However, would it also hold for a chosen system that is finite in size, thus, with a

small volume?

In obtaining Eq. SI-1.5, quantum translational energy states are actually considered however

the discrete sum, that in 1-dimension (along the x-axis) takes the form1

qtrans,x =
∞∑

nx=1

exp
[
−βh2n2

x/(8mL
2
box)
]

(SI-2.1)

with nx a positive integer, is approximated by an integral over nx,

qtrans,x ≈
∫ ∞
0

exp
[
−βh2n2

x/(8mL
2
box)
]
dnx . (SI-2.2)

Because motion along each axes is independent, the translational partition function in 3-dimensions

becomes,

qtrans = qtrans,x · qtrans,y · qtrans,z . (SI-2.3)

Approximating Eq. SI-2.1 by Eq. SI-2.2 requires successive terms in the sum to be spaced close

enough. In fact, the spacing is constant with a value of an integer unit, nonetheless, it can be small

relative to the range (width along the nx axis) of significant terms that are summed. Given the

Gaussian form of the terms inside the sum, the condition is that the width σ =
√

(8mL2
box/(βh

2))

should be much larger than 1. For the single-site monomer system mentioned in Section SI-1

(m = 10 amu, Lbox = 6.0 nm, and T = 300 K), the value of σ is 212. Although this may be

considered a large number compared to 1, we also assess the approximation directly by calculating

qtrans (Eq. SI-2.3) using the discrete summation of energies as indicated in Eq. SI-2.1. The results

are, qtrans(A) = 6.6171 · 106 and qtrans(A2) = 1.8760 · 107, for the monomer and dimer respectively.

The corresponding values using the ’classical’ translation approximation (Eq. SI-1.5), shown in

Table SI-1.1, exhibit relative deviations of 0.6 % and 0.8 %. As a matter of fact, our aim is to

6
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assess the ’classical’ approximation applied to the ratio of the partition functions shown in Eq. 12.

We therefore define,

Rq =
qtrans(A2)[
qtrans(A)

]2 , (SI-2.4)

as well as the corresponding ratio of the ’classical’ translational partition functions,

R
classical

q =
q

classical

trans(A2)[
q

classical

trans(A)

]2 , (SI-2.5)

and quantify the relative error by,

∆ =
Rq −R

classical
q

Rq

, (SI-2.6)

which also represents the relative error in determining K. This gives ∆ = 0.010, thus an error of

1 %, an acceptable accuracy for many applications.

As apparent from Eq. SI-2.1, besides volume, the width of the translational energy sum is also

affected by mass and temperature. To study the effect of these three parameters systematically, we

consider the single-site monomer system again and vary each parameter while keeping the other two

constants. We then plot ∆ as a function of the parameter that is changed and display the results in

Fig. SI-2.1. As expected ∆ decreases for heavier masses, higher temperatures, and larger volumes.

1 10 100 1000

L
box

  [nm]

0.0001

0.001

0.01

0.1

 ∆

T=300 K

m=10 amu

1 10 100 1000 10000

m  [amu]

0.001

0.01

 ∆

T=300 K

L
box

=6 nm

1 10 100 1000

T  [K]

0.01

0.1

 ∆

m=10 amu

L
box

=6 nm

Figure SI-2.1: The relative error, ∆, defined in Eq. SI-2.6, of applying the ’classical’ translation

approximation to the ratio of the partition functions as a function of mass (left panel), temperature

(middle panel), and box-length (right panel). The values of the parameters fixed in each plot

correspond to the system defined in Section SI-1.

The smallest mass considered is 1 amu which corresponds to the lightest (i.e., a hydrogen) atom.
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For temperature, the lowest value shown is 1 K. Although attainable, is unlikely to be of interest

for most association/dimerization reactions of molecular systems and higher temperatures are more

relevant. The smallest value considered for volume is that which corresponds to Lbox = 1 nm.

Again, this smallest system is not likely to be applicable here because it can not satisfy the ideal

gas behavior assumed in the derivation of K. Given the excluded volume of one atom and range

of interaction between two atoms, a larger system is required. For the two-site monomer system

described in the main text, with a LJ potential acting between particles (i.e., the dispersions decay

as 1/r6), we found that a box length of 3 − 4 nm is probably the smallest for which ideal gas

behavior can be observed. In any case in Fig. SI-2.1, the largest relative error observed is 17 %

(middle panel at T = 1 K) indicating the approximation in this case is not valid.

We now attempt to identify chemical systems for which the ’classical’ translation approximation

will exhibit the largest deviations. Very low temperatures are crucial, and systems operative under

this condition are low molecular weight gases just above their boiling temperature. In Table SI-

2.1 we list four gases (helium, hydrogen, neon, and nitrogen) having the lowest boiling points

(4 − 77 K). We then consider these gases in a small box, that in our computational experience

is already too small to support ideal behavior, and calculate the relative error ∆. What should be

considered an acceptable error? Because ∆G∅ is related to K by a natural logarithm, a given error

in the value of the latter translates to a much lower error of the former. We therefore propose,

arbitrarily, relative errors lower than 0.05 to be acceptable and mark larger errors in table SI-

2.1 by red color. For hydrogen gas, only at temperatures higher than ∼ 200 K the ’classical’

approximation can be applied, for helium, at temperatures higher than ∼ 100 K, whereas for neon

and nitrogen, or for any other gas, at any temperature.

8
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Table SI-2.1: The relative error, ∆, defined in Eq. SI-2.6, of applying the ’classical’ translation

approximation to the ratio of the partition functions for dimerization of hydrogen (H2), Helium

(He), Neon (Ne), and Nitrogen (N2) gases confined to a cubic box with Lbox = 3.0 nm, at

their corresponding boiling point Tb and at three higher temperatures. Discrepancies with relative

magnitude larger than an arbitrary threshold of 5 % are marked in red.

gas m [amu] Tb [K] ∆(T = Tb) ∆(T = 100 K) ∆(T = 200 K) ∆(T = 300 K)

H2 2.0 20.3 0.17 0.078 0.055 0.045

He 4.0 4.2 0.25 0.055 0.039 0.032

Ne 20.2 27.1 0.047 0.025 0.018 0.014

N2 28.0 77.4 0.024 0.021 0.015 0.012

9
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