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In recent molecular dynamics simulations [Phys. ReV. E 2003, 68, 061508] we found that the deviation of the
single-particle displacement distribution from Gaussian form is a characteristic that is common to all phases
of a system confined to a quasi-two-dimensional geometry (liquid, hexatic, and solid). These deviations,
which intensify with increasing density and/or decreasing temperature, are a consequence of correlated particle
motion and are related to the emergence of a third dynamical relaxation mode in the intermediate time regime.
It was suggested that this collective motion is generated by superpositions of instantaneous normal mode
vibrations along diffusive paths. The diffusive paths are along the directions with strong bond-orientation
correlation and start to grow in amplitude rapidly on entry into the hexatic phase. In this paper we report the
results of a study of the relation between the distribution of the instantaneous normal mode frequencies and
the observed cooperative dynamics. We find that as the temperature decreases the distribution of the
instantaneous normal mode frequencies (the real and the imaginary parts) shifts to lower frequency and the
deviations of the single-particle displacement distribution from Gaussian form increase. The results indicate
that there is a relationship between the average time at which the cooperative dynamics of the system is
maximum,〈tmax〉, and the average value of the squared frequency for which the spectrum of the imaginary
normal modes is maximum,〈-ωmax

2 〉, that has the form ln (tmax〉 ) ln 〈-ωmax
2 〉-l + c(F), wherec(F) is a

density dependent constant.

I. Introduction

Single-particle motion in a condensed phase is affected by
interactions with many other particles. However, at short and
long times, the many-body problem simplifies and the one-body
dynamics are deterministic and stochastic, respectively, in those
time regimes. As a result, the distribution of the single-particle
displacement in each of these two limiting time regimes has a
Gaussian form. Deviations from the Gaussian distribution of
particle displacements that occur at intermediate times in three-
dimensional systems are very small.1-3 In these cases, the first
correction to the Gaussian approximation is typically 10% or
less of the leading term and successive terms are even smaller.
However, stronger deviations from Gaussian behavior have been
observed in dense glass-forming liquids just above the glass
transition.4-7

The situation in two dimensions is different. It has been
shown, both computationally8-11 and experimentally,12,13 that
the motion of dense two-dimensional liquids is heterogeneous,
and the single-particle displacement distribution has a large non-
Gaussian component. Moreover, it is found that in these dense
liquids the single-particle displacement involves cooperative
stringlike motions in some time regimes. Recently, it was also
found that the density dependence of the deviations from a
Gaussian form exhibits a sharp increase in its magnitude at the

liquidus density and extends into the hexatic and crystalline
phases.14,15For densities greater than the liquidus density, three
dynamical relaxation processes were observed that include, at
intermediate times, a slowing down in the rate of growth of the
diffusive displacement of a particle due to the cage effect. As
the density increases toward the solidus density, the dependence
of the mean squared displacement on time, at intermediate times,
changes from sublinear to zero. The onset of the long time
relaxation mode corresponds to the time at which the deviation
of the particle displacement distribution from Gaussian form is
a maximum. At this time, which increases exponentially with
the density, the self-part of the van Hove function exhibits
multiple maxima with respect tor while the distinct-part of the
van Hove function is a maximum at the origin, thereby signaling
jump dynamics. At long times the particle mean square
displacement has diffusive character at all densities, including
solid phase densities. The continuity of the character of the
particle displacement from the liquid phase, through the hexatic
phase, into the solid phase is striking and suggests that it arises
from the same physical phenomenon. It has been argued that
the drivers for the collective motions are superpositions of
instantaneous normal mode vibrations along paths that feature
activated hopping of particles. These diffusive paths are along
the directions with strong bond-orientation correlation.14,15

Normal mode analysis of the motion of a many-body system
is rigorously possible in crystals for which the restoring forces† Part of the special issue “Hans C. Andersen Festschrift”.
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acting on a particle are linear in the displacement of the particle
from its equilibrium position.16 The analysis is generated by
expanding the total potential energy of the system,U, to second
order (harmonic approximation) in the deviation,δ, of the set
of atomic coordinatesr ≡ {r1, ..., rN} from their lattice sitesr0:

Assuming the lattice configuration is a minimum ofU, the
linear termF(r0) vanishes. The second-order term is the force-
constant matrixG, namely, the second derivatives of the
potential energy with respect to the mass-weighted coordinates
(the dynamical matrix). Its eigenvalues are the squares of the
vibrational frequencies of the system,ω, from which the
density of states,F(ω), can be calculated. The eigenfunctions
of the dynamical matrix are the normal modes of vibration
(phonons).

In a liquid there exist no well-defined lattice sites, and most
configurations will not be minima of the potential (i.e., they
have no unique position of mechanical stability about which
the potential energy of the system can be expanded). Neverthe-
less, Zwanzig has argued that collective variables, analogous
to longitudinal and transverse phonons in crystals, do exist in
classical liquids.17 He noted, however, that their lifetimes are
exceedingly short except in the glassy state. The application of
normal mode analysis to the liquid state will, therefore, generate
a fraction of negative eigenvalues corresponding to imaginary
frequencies. Imaginary frequencies are a signature of negative
curvature of the potential energy surface and are a measure of
barrier or saddle point crossing. Thus, the imaginary normal
modes reflect the fluidity of the system. The states that are
associated with the negative eigenvalues are termed unstable
modes while those associated with the positive eigenvalues are
termed stable modes. The density of states is, therefore, the sum
of two physically distinct parts

The temperature dependence of the distribution of imaginary
frequencies has been studied extensively.18,19

The justification for using a harmonic analysis in liquids is
to be found in the restriction of that analysis to short times.
According to the Maxwell description of viscoelasticity, for short
times a liquid behaves like a solid and the stable modes give
the distribution of frequencies for particle displacements relative
to the corresponding averaged lattice. The lattice is not stable,
however, and rearranges. This rearrangement is governed by
the unstable modes. This idea has been followed up by many
authors,20-25 most notably by Keyes and co-workers26-28 and
by Stratt and co-workers29-31 via the definition of instantaneous
normal modes of a liquid.

In the activated view of transport, the dynamics of the system
is viewed as a series of barrier crossings on the multidimensional
free energy surface. Goldstein has exploited this viewpoint in
a discussion of the approach to the glass transition.32 The
hopping rate between local minima was identified as the crucial
quantity in a theory of self-diffusion.33 It is argued that the
imaginary frequency distribution of the instantaneous normal
modes yields considerable information about the energy barriers
to diffusion.34-36 In particular, a correlation between the fraction
of unstable normal modes and the self-diffusion constant has
been observed.23,37,38However, imaginary normal modes fre-
quencies have been found to exist in glass-forming liquids below
the glass transition.25,39-42 These nondiffusive unstable normal
modes were associated with “potential shoulder” motions that

correspond to negative curvature inside a single well while the
diffusive unstable normal modes were associated with “double
well” motions that correspond to barrier crossing. It should be
noted that diffusion constants are descriptions of the particle
motion in the long time regime, whereas the instantaneous
normal modes have utility only in the short time regime.
Nevertheless, it turns out that there is enough information in
the instantaneous normal mode spectrum to cast light on the
(long time) dynamics of the system.43

In this study, we investigate the relation between the
distribution of the instantaneous normal mode frequencies and
the observed cooperative dynamics in a quasi-two-dimensional
assembly of particles. Our goal is the establishment of a one-
to-one relationship between the character of the instantaneous
normal mode spectrum and the observed behavior of the mean
squared single-particle displacement as a function of time and
density; we do not attempt to calculate the diffusion constant.
We find that as the temperature decreases the distribution of
the instantaneous normal mode frequencies (the real and the
imaginary parts) shifts to lower frequency and the deviations
of the single-particle displacement distribution from Gaussian
form increase. Our results indicate that the relation between the
average time at which the cooperative dynamics of the system
is maximum, 〈tmax〉, and the average value of the squared
frequency for which the spectrum of the imaginary normal
modes is maximum,〈-ωmax

2 〉, has the form ln 〈tmax〉 )
ln 〈-ωmax

2 )-1 + c(F), where c(F) is a density dependent
constant.

II. Methods

The model systems that we study consist of a single layer,
with N ) 2016 particles, placed in a quasi-two-dimensional
simulation box. The simulation box is rectangular in thexy-
plane, with side lengths in the ratiox/y ) 7/(8x3/2); it has a
height slightly greater than the particle diameter (see below).
Periodic boundary conditions were imposed in thex and y
directions, but not in thez direction. The calculations were
carried out, and the results are reported below, in terms of the
reduced variablesr* ) r/σ, z* ) z/σ, T* ) kBT/ε, F* ) Fσ2, t*
) t(kBT/mσ2)1/2, ω* ) ω(kBT/mσ2)-1/2, m ) 1, with σ the
diameter of the particle,F the number density,m the mass of
the particle,t the time,ω a normal mode frequency, and 3.689ε

the value of the interparticle potential atr* ) 1.000. Although
the particles can move in thez direction under the influence of
a z-dependent one-body potential, we choose to characterize
the state of the system with the two-dimensional number density
F ) N/A, whereA is the area of the of the simulation cell in the
xy-plane, since the height of the cell,H, is constant in all of the
simulations presented in this paper. The same number of
particles was present in the simulation cell for all of the densities
studied. To study the properties of the system with different
particle densities, we changed the area of the simulation cell in
thexy-plane. The forms of the pair potential and the confinement
potential were chosen to model an assembly of constrained
colloid particles, since extensive experimental data are available
for the single-particle mean squared displacement as a function
of time and density for this system (see section IV).

The interparticle potential was represented by

with A ) 2 × 10-19 andR ) 64. The functional form in eq 3
is hard-core repulsion but has continuous derivatives. It is plotted

U(r ) ) U(r0) + F(r0)δ + 1/2G(r0)δ
2 (1)

〈F(ω)〉 ) 〈Fs(ω)〉 + 〈Fu(ω)〉 (2)

u(r*) ) A(r* - 1
2)-R

(3)
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in Figure la. The confinement of the particles in the(z
directions is affected by the action of a one-bodyz-dependent
external field. Different forms can be chosen for this field, the
simplest being that for hard parallel walls. Then the extra degree
of freedom that is introduced in the thermodynamic description
of the system is the spacing between those two walls. The shape
of the potential that was chosen

is such as to confine the system to form a slab with well-
specified heightH. In eq 4,z* is the distance from the center
of the cell to the center of mass of the particle andú ) 24, D
) 2 × 1024; this potential confines the particles as if they were
in a cell with an effective height ofH ) 1.20σ (i.e.,z* ) (0.10)
and is shown in Figure lb. The slab height is small enough so
that the buckled phase is unstable even at the highest two-
dimensional number density studied (F* ) 1.120), and the
transverse density distribution is homogeneous.44

The molecular dynamics (MD) simulations were carried out
in the microcanonical ensemble using the “velocity Verlet”
algorithm.45,46 The distance at which the potential was cut off
was 1.5σ and the time step used was, in reduced units, 5×
10-4; the associated rms fluctuation in total energy did not
exceed one part in 105.

The initial configurations for the simulations atT* ) 1.0000
were taken from equilibrated configurations of a previous study
that investigated the correlated motion of the particles.14 The
system was further equilibrated for 1.2× 106 MD steps. The
simulations atT* ) 1.0000 were performed for eight densities
in the range 0.740e F* e 1.120 that covers the liquid, hexatic,
and solid phases. For four densities,F* ) 0.740, 0.820, 0.880,
and 1.120, the behavior of the system at four other different
temperatures,T* ) 0.1000, 0.0100, 0.0010, and 0.0001, was
studied as well. At each density the required temperature was
created in a preequilibration stage by multiplying the velocities,
every 1× 105 MD steps, by an appropriate constant. This stage
was repeated until the relative difference between the average
temperature of the system and the prescribed temperature did
not exceed 5× 10-4 in reduced units. Then the system was
further equilibrated for 1.2× 106 time steps as for the case at
T* ) 1.0000. The equilibration and the data collection stage
were carried out without velocity rescaling (thus, in the
microcanonical ensemble) to ensure uninterrupted dynamical
paths. Nevertheless, the relative rms deviation of the average
temperature from the prescribed temperature was less than 5×
10-4.

The lateral pressure,Pl, was calculated from

where the angular brackets indicate an average value, the
volume,V, is V ) AH and the lateral virial,Wl, is

The structural properties of the system were characterized
by calculating the radial distribution function,g(rxy)

where r xy is the lateral vector component of the particle’s
position, and the bond-orientation function,G6(rxy)

whereψ6(rxy) is the local order parameter descriptive of the
hexagonal symmetry characteristic of close-packing in two
dimensions; it is defined by

The sum in eq 9 is taken over theni nearest neighbors to particle
i, as determined by a two-dimensional Voronoi polygon
construction.47 We denote byθij the angle between the vector
r xy,ij and an arbitrary fixed axis. The global translational order
parameter is defined to be the sum of the Fourier components
of the density

whereGB is a reciprocal lattice vector of the triangular two-
dimensional lattice. The corresponding global orientational order
parameter is defined by

Figure 1. (a) The pair potential used in this study. (b) The external potential confining the particles to a slab with height ofH ) 1.20σ. The
external potential is plotted as a function of the reduced center of mass coordinate along the vertical axis (z-axis) measured from the center of the
cell.
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∑
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The lateral mean square displacement,∆rxy
2 (t), was calcu-

lated using the following expression

We describe the time dependent deviation of the particle
displacement from Gaussian behavior by the non-Gaussian
parameter,R2(t). In two dimensions it has the following
representation:

The calculation of the in-plane instantaneous normal mode
frequencies was carried out by evaluating the 2N × 2N force-
constant matrix from the second derivatives of the potential
energy function with respect to the particle’s coordinates. Then
the force-constant matrix was diagonalized yielding2N eigen-
values. These eigenvalues are the squares of the 2N normal
modes frequenciesω. The second derivatives of the interparticle
potential,u(r), are calculated from the following expressions:

All the calculations were carried out with double precision so
that the difference of the character of the force-constant matrix
before and after the diagonalization was approximately one part
in 1015. The eigenvalues were averaged over 400 configurations
separated by 1000 MD steps from each other.

III. Results

The thermodynamic behavior as a function of the two-
dimensional number density of a system with the pair potential
shown in Figure la, and of systems with other pair potentials,
have been reported previously.14,44The plateau region (or weak
van der Waals loop) observed in the lateral pressure density
isotherm (Figure 2a) for the density range 0.865e F* e 0.895
is the signature of a first-order phase transition. Figure 2b
displays the global translational and orientation order parameters
as a function of density. From these plots we conclude that for
densitiesF* e 0.860 the system is in the liquid phase, for
densities 0.870e F* e 0.890 it is in the hexatic phase, while
for densitiesF* g 0.900 the system is in the solid phase. These
phase boundary identifications are consistent with the analysis
of the pair correlation and bond-orientation correlation functions
(not shown).

Figure 3 displays the fraction of the instantaneous normal
modes with real and imaginary frequencies as a function of the
two-dimensional number density. For densities that correspond
to liquid, hexatic, and low-density solid phases, the number of

the imaginary frequencies is large (0.40-0.32). Only at higher
densities, inside the solid phase (F* ∼ 0.980), does the number
of the negative eigenvalues decrease sharply to zero. AtF* )
1.120 the values of 2N - 2 mode frequencies are larger than
∼1.0 while the absolute values of two normal mode’s frequen-
cies are smaller than∼e-10 (they are equal to zero within the
machine precision). These two normal modes correspond to two
center of mass translations in thexy-plane. This is of course

〈∆rxy
2 (t)〉 )

1

N
∑
i)1

N

[r xy(t) - r xy(0)]2 (12)

R2(t) )
〈[r xy(t) - r xy(0)]4〉

2〈[r xy(t) - r xy(0)]2〉2
- 1 (13)

∂
2u(r)

∂xi∂yi
) -

xijyij

rij
2 [∂2u(r)

∂r2 |r)rij
- 1

rij

∂u(r)
∂r |r)rij] (14)

∂
2u(r)

∂xi∂xj
) - 1

rij
2[xij

2∂
2u(r)

∂r2 |r)rij
+

yij
2
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] (15)
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(16)
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∂xi∂xi
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2u(r)
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Figure 2. (a) Lateral pressure (in reduced units) as a function of the
two-dimensional number density. The low-density end of the plateau
region atF* ) 0.865 signifies the onset of the liquid phase while the
high-density end atF* ) 0.895 marks the onset of the solid phase. (b)
The global translational and orientation order parameters indicating that
the hexatic phase is stable for 0.870e F e 0.890.

Figure 3. Fraction of the real and imaginary normal mode frequencies
as a function of the two-dimensional number density forT* ) 1.0000.
The density range of the liquid, hexatic, and solid phases is indicated.
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true for every density. Note that, due to the type of periodic
boundary conditions used, rotation of the center of mass around
thez-axis is not possible; hence, the angular momentum is not
conserved in this system.

The high fraction of imaginary instantaneous normal modes
found in the liquid, hexatic, and low-density solid phases
correlates with the long time diffusive behavior found for these
phases. Figure 4 displays the single-particle mean squared
displacement for the density range 0.870e F* e 0.920 that
corresponds to hexatic and solid phases. The plots exhibit three
dynamical relaxation processes. At long times the particle mean
square displacement has diffusive character (i.e., the dependence
of the mean squared displacement on time is linear) at all
densities shown. The time at which there is an onset of the long
time diffusive motion corresponds to the time at which the
deviation of the single-particle displacement distribution from
Gaussian form is a maximum,tmax

/ (Figure 5). At this time,
which increases exponentially with the density, the self-part of
the van Hove function exhibits multiple maxima (with respect

to the interparticle distance) while the distinct-part of the van
Hove function is a maximum at the origin, thereby signaling
jump dynamics.14,15This behavior suggests that the mechanism
of diffusion involves an activated process of correlated particle
hopping in random directions. As shown in Figure 3, the solid
phase densities for which such diffusive behavior is observed
are characterized by a substantial fraction of imaginary normal
mode frequencies, implying that particles in the system easily
cross barriers on the free energy hypersurface. As the fraction
of imaginary normal mode frequencies decreases the probability
of correlated hopping, as expressed by the time for which the
diffusive behavior appears (or bytmax

/ ), decreases as well.
Figure 6a shows the distribution of the natural logarithm of

the squared real normal mode frequencies for several densities.
The location of the maxima for two-dimensional number
densities in the range 0.740e F* e 0.920 is the same (ln(ω*2)
∼ 0.8). Nevertheless, the profile is broadened toward lower
frequencies as the density decreases. This density range corre-
sponds to that for which large deviations of the single-particle
displacement distribution from Gaussian form (associated with
correlated motion) were observed (Figure 5). For densitiesF*
g 0.980, the locations of the maxima in Figure 6a shift toward
higher frequencies and the distribution narrower as the density
increases. The distributions of the imaginary normal mode
frequencies are displayed in Figure 6b. Again, the width of the
distribution decreases as the density increases, and forF* g

Figure 4. Lateral mean squared displacement (in reduced units) as a
function of the reduced time,t*, for two-dimensional number densities
0.870 e F* e 0.920. The curves show the emergence of the three
dynamic relaxation modes. The slope of the mean squared displacement
for the longest relaxation mode is linear for all densities, indicating
diffusive behavior. The time of the onset of the longest relaxation mode
increases exponentially with the density, and it corresponds to the time
at which the deviation of the particle displacement distribution from
Gaussian form is a maximum.

Figure 5. The non-Gaussian parameterR2(t*) as a function of the
reduced time,t*, for two-dimensional number densities 0.860e F* e
0.920. Thex-axis is plotted on a logarithmic scale. The value ofR2(t*)
at the maximum as well as the time at which the maximum appears
increase for higher densities. The latter depend exponentially on the
density.

Figure 6. (a) Distribution of the natural logarithm of the positive
eigenvalues (the square of the real normal mode frequencies) for two-
dimensional number density in the range 0.740e F* e 1.120 that spans
the liquid, hexatic, and solid phases. (b) The distribution of the natural
logarithm of the absolute value of the negative eigenvalues (the square
of the imaginary normals mode frequencies). The sum of the integrals
of the positive and negative eigenvalues is normalized to unity.
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0.980 the maximum is shifted toward higher frequency. The
number of imaginary frequencies forF* ) 1.120 is zero. All
the plots of the distributions of the instantaneous normal mode
frequencies are normalized such that the sum of the integrals
of the real and imaginary frequencies is 1.

The fact that the distributions of the normal modes frequencies
are peaked at the same location for liquid, hexatic, and low-
density solid phases (0.740e F* e 0.920) is striking, and it
differs from what is found in three-dimensional systems. Seeley
and Keyes found that the maximum of the density of states of
a supercooled 3D liquid shifts to higher frequency as the density
increases,37 a behavior that is observed in our two-dimensional
system only for high densities,F* g 0.980, where the long time
diffusive behavior is not observed. It is interesting to note that
for the density range 0.740e F* e 0.920, that spans three
different thermodynamic phases, there is continuity of the
character of the particle displacement, namely, strong deviations
from Gaussian form due to correlated motion.14,15

In a truly (discontinuous) hard sphere system, the thermo-
dynamic state is temperature independent. However, the pair
potential shown in Figure la contains a small region which is
relatively soft. This is exploited in the present simulations to
induce phase transitions, similar to those obtained by changing
the two-dimensional number density, by reducing the temper-
ature.

For four densities,F* ) 0.740, 0.820, 0.880, and 1.120, the
behavior of the system at five temperatures in the range 1.0000
e T* e 0.0001 was studied. ForF* ) 0.740 and forF* )
1.120 the state of the system for all temperatures is liquid and
solid, respectively. ForF* ) 0.880 the hexatic phase atT* )
1.0000 is transformed to a solid phase atT* ) 0.1000. The
most drastic phase changes were observed forF* ) 0.820.

Figure 7 displays the pair correlation function and the bond-
orientation correlation function forF* ) 0.820 atT* ) 0.1000
and 0.0100. Both correlation functions have short-range order
for T* ) 0.1000 (liquid close to the freezing point) and long-
range order forT* ) 0.0100 (solid close to the melting point).
We predict the hexatic phase is stable in the temperature range
0.1000> T* > 0.0100.

Figure 8 displays the single-particle mean squared displace-
ment forF* ) 0.820 at five different temperatures. Similar to
the results shown in Figure 4, as the temperature decreases
below T* ) 0.1000, a new relaxation process at intermediate
time emerges. The dependence of the mean squared displace-
ment on time in this intermediate time regime is sublinear. At

Figure 7. Pair distribution function,g(rxy), (left panel) and the bond-orientation function,G6(rxy), (right panel) forT* ) 0.1000 and 0.0100 displaying
the characteristic structural properties of the liquid and solid phases, respectively.

Figure 8. Lateral mean squared displacement (in reduced units) as a
function of the reduced time for the temperature range 1.0000e T* e
0.0001 forF* ) 0.820.
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long times the particle mean square displacement has diffusive
character for all temperatures including these that correspond
to the solid phase. Note that although the slope of the mean
squared displacement versus time at short time (describing the
ballistic motion) is the same for all temperatures (since the mean
squared displacement is a quadratic function of time) the
intercept is temperature dependent.

In Figure 9 the value of the non-Gaussian parameterR2(t*)
is plotted as a function of the reduced time forF* ) 0.820 for
the temperature range 1.0000e T* e 0.0001. The value of
R2(t*) exhibits a maximum whose magnitude increases as the
temperature decreases. The time for whichR2(t*) is maximum,
tmax
/ , (indicated by thin lines in Figure 9) corresponds to the

onset of long time diffusion (Figure 8). Figure 10 showsR2(t*)
on a different scale indicating the location of the maxima of
R2(t*) at T* ) 1.0000 and 0.1000. Note that the maxima that
occur at short times for all temperatures originate from the
deviation of the single-particle displacement from ballistic
motion due to the first collision event.14 The behavior of this
maximum as a function of the temperature is opposite to that
of the maximum that is due to correlated motion observed at
larger time.

The fraction of the instantaneous normal modes with real and
imaginary frequencies as a function of the temperature for three
densitiesF* ) 0.740, 0.820, and 0.880 is displayed in Figure
11. The decrease of the imaginary normal modes fre-
quencies with temperature decrease is small. For example,
for F* ) 0.820 the fraction of the imaginary normal modes is
0.35 atT* ) 0.1000 (liquid) while it is 0.33 atT* ) 0.0100
(solid). The persistence of a large fraction of imaginary
frequencies in the liquid, hexatic, and solid phases suggests
similarity of the dynamical behavior (cooperative motion) found
in these phases.

The distributions of the real and imaginary instantaneous
normal mode frequencies forF* ) 0.820 are shown in parts a
and b of Figure 12, respectively. In both cases, as the
temperature decreases there is a continuous shift of the distribu-
tion toward lower frequency. The number of particles that
participate in a normal mode motion increases as the frequency
of the normal mode decreases; hence, it is plausible to suggest
that the enhanced correlated motion observed as the temperature
decreases is due to excitations of long wavelength normal modes
above the free energy barrier for crossing. This argument implies
a relation betweentmax

/ and the value of the real and imaginary
frequency for which the corresponding spectrum of the normal
modes is maximum,ωmax

/2 and-ωmax
/2 , respectively. Figure 13

displays the value of ln(tmax
/ ) as a function of ln(ωmax

/2 ) and
ln(-ωmax

/2 ). Also plotted are the lines obtained from a linear
regression fit. The high value of the regression coefficients
(0.997 and 0.991) indicates that a linear relation between
ln(tmax

/ ) and ln(ωmax
/2 ), ln(-ωmax

/2 ) does exist. The value of the
slope is-1.0005 and-1.0975 for the case of the real and
imaginary frequencies, respectively. Since diffusion is associated
with the imaginary frequencies, the relation betweentmax

/ and
-ωmax

/2 is of the form

wherec(F*) is a density dependent constant as is evident from
Figure 5 and Figure 6 where it is shown that as the density
changes,tmax

/ changes but-ωmax
/2 does not.

In Figure 14 we plot the same distributions as in Figure 12
with the squared frequencies scaled bykBT* . The resulting
distributions are centered at around the same value and differ
only in their width. Exactly the same behavior is observed for
F* ) 0.740 and 0.880 (Figure 15). These results are similar to

Figure 9. The non-Gaussian parameterR2(t*) as a function of the
reduced time for the temperature range 1.0000e T* e 0.0001 forF*
) 0.820. The location of the maximum ofR2(t*) at each temperature,
tmax
/ , is indicated by the thin line. Note that the time of the onset of the

longest relaxation mode of the mean squared displacement shown in
Figure 8 corresponds totmax

/ .

Figure 10. Magnification of Figure 9 showing the location of the
maximum ofR2(t*) at T* ) 1.0000 and 0.1000. Note that the maxima
that occur at short times for all temperatures originates from the
deviation of the single-particle displacement from ballistic motion due
to the first collision event.

Figure 11. The fraction of the real and imaginary normal mode
frequencies as a function of the temperature forF* ) 0.740, 0.820,
and 0.880.

ln 〈tmax
/ 〉 ) ln 〈-ωmax

/2 〉-1 + c(F*) (18)
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those obtained by Keyes18 for the temperature dependence of
the imaginary frequency distribution,〈Fu(ω; T)〉 ) a(T)ωe-cω4/T2.
However, for the solid phase at very high density,F* ) 1.120,
where all the normal mode frequencies are real, we observe a
different behavior. Figure 16 indicates that the distributions of
the normal mode frequencies are peaked at around the same
value without thermal scaling. The effect of decreasing the

temperature is to yield narrower distributions that are shifted
from high frequency to lower frequency.

IV. Discussion

The deviation of the single-particle displacement distribution
from Gaussian form is a result of correlated motion that has
also been observed in real quasi-two-dimensional colloid
suspensions.12,13 The ubiquity of this behavior in colloid and
atomic systems is striking in view of the fact that the elementary
particle dynamics are different for the two systems. Specifically,
colloid particles exhibit Brownian motion with a self-diffusion
coefficient that depends on the viscosity of the suspending
medium, and their motion generates a nontrivial hydrodynamic
coupling that is transmitted by the suspending medium and is
concentration dependent. The appropriate equations of motion
involve a complex combination of fluctuating forces due to the
solvent and systematic forces due to hydrodynamic coupling.
In contrast, atomic particles move without friction, and the
dynamics are correctly represented with Newton’s equations of
motion. Nevertheless, as already indicated, it is found that the
overall behavior of the single-particle mean squared displace-
ment determined from molecular dynamics simulations is the
same as that observed in a real quasi-two-dimensional colloid
assembly.

The principal difference between the use of Newtonian
mechanics in a molecular dynamics simulation and Langevin
mechanics in a Brownian dynamics simulation is associated with
high-frequency motions. In particular, the random force that

Figure 12. Distribution of the natural logarithm of the positive (a)
and negative (b) eigenvalues for the temperature range 1.0000e T* e
0.0001 for F* ) 0.820. The graphs show that as the temperature
decreases the distributions are shifted toward lower frequencies.

Figure 13. The time at which the deviation of the single-particle
displacement from Gaussian form is maximum,tmax

/ , as a function of
the value of the real and imaginary frequency for which the corre-
sponding density of states is maximum,ωmax

/2 and-ωmax
/2 respectively.

The dashed lines are results obtained from a linear regression procedure.

Figure 14. Same as Figure 12 but with thermal scaling of the
frequencies,ω*2/kT* . The graphs show that the distributions are peaked
at around the same frequency.
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appears in the Langevin equation of motion in Brownian
dynamics simulations has a correlation time that is infinitesi-
mally short, which generates different particle dynamics in the
two types of simulations for a time interval that is smaller than
the average time between Brownian particle collisions. However,
whether the equation of motion has Newtonian or Langevin
form, the mean squared displacement of a particle at very short
time is a quadratic function of time and at very long time is a
linear function of time.48 The many collisions that occur in the
intermediate and long time regimes transform the deterministic
behavior of a molecular dynamics simulation to stochastic
behavior and, eventually, hydrodynamic flow. It is worth noting
that hydrodynamic interactions in quasi-two-dimensional sys-

tems are anomalous in a number of respects. These interactions
are, in three dimensions, long ranged, thereby generating
complicated many-particle effects. However, the confinement
of the fluid drastically affects the range and character of the
hydrodynamic interactions. In a quasi-one-dimensional system
that range is restricted to the channel width.49 In a quasi-two-
dimensional system the hydrodynamic coupling between two
particles falls off asr-2, and it has been found that there is a
remarkable insensitivity of the large separation behavior of that
interaction to changes in particle density.50 It can be proven
that the correction to the pair hydrodynamic interaction due to
third particles (i.e., the first-order correction in packing fraction)
vanishes. The next order (four-body effect) does not vanish but
is expected to be very small. For most practical purposes,
therefore, even at high particle concentrations, one may regard
the hydrodynamic interaction at large distances in a quasi-two-
dimensional system as a long-ranged, yet purely pairwise effect.
This surprising result is unique to the quasi-two-dimensional
two-plate geometry. It has the consequence that the absence of
direct hydrodynamic interactions in the simulation mechanics
will not lead to qualitative error. It is for these reasons that the
behavior of the mean squared particle displacement in colloid
and atomic systems is qualitatively the same.

Returning now to the calculations reported in this paper, the
correlated motion of the particles is found to become relatively
more important as the density is increased or the temperature
is decreased. The continuity of the collective motion from the
quasi-two-dimensional liquid phase through the hexatic phase
and into the crystalline phase suggests that it has a common
physical basis. We suggest identifying that common physical
basis as the distribution of instantaneous normal mode frequen-
cies. In particular, it is shown that the time for which the
cooperative motion in the system is maximum,tmax, is related

Figure 15. Distribution of the natural logarithm of the real (upper panel) and imaginary (lower panel) frequencies scaled bykT* in the temperature
range 1.0000e T* e 0.0001 forF* ) 0.740 and 0.880.

Figure 16. Distribution of the normal mode frequencies forF* ) 1.120.
There are no imaginary frequencies at this high-density solid. Note
that in contrast to the behavior at lower densities, the distributions are
peaked at around the same frequency for all temperatures.
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to the frequencies of the most populated imaginary normal
modes-ωmax

/2 . This behavior is consistent with the argument
that the collective motion that is characteristic of a quasi-two-
dimensional liquid in the intermediate time regime is generated
by superpositions of instantaneous normal mode excitations with
free energy greater than the free energy barrier for hopping. As
the density increases or the temperature decreases, the lifetimes
of the instantaneous normal vibrations increase, thereby allowing
more effective competition between cooperative hopping motion
and independent particle motion so that the cooperative hopping
becomes increasingly dominant. The natural hopping directions
are along axes with strong bond-orientation correlation. This
mechanism is rather like that proposed for one particle diffusion
in crystals. Rice and co-workers showed that the diffusion
coefficient can be represented in terms of a superposition of
the normal vibrations of the crystal that have nonvanishing
projections on the path between an occupied site and a
neighboring vacant site.51-55

The notion that correlated motion in so-called “cooperatively
rearranging regions” defines the dynamics of particle transport
in a liquid was first introduced by Adam and Gibbs for the case
of dense glass-forming liquids.56 The typical size of a co-
operatively rearranging region grows with decreasing tem-
perature.4-7 In a more recent development of an alternative
theory, Halpern extended the random energy model for three-
dimensional supercooled liquids to include two routes for the
particles to leave their traps by thermal excitation. The correlated
motion of a group of particles was assigned a smaller activation
energy and a smaller prefactor (a smaller matrix element for
the transition) than independent particle motion so that at low
temperature it dominates the diffusion mechanism.57

There is a striking similarity between the single-particle
displacement distribution in a quasi-two-dimensional liquid near
the liquidus with that obtained near the glass transition for glass-
forming liquids. However, there is also a fundamental difference
between these results. The glass transition is a kinetic effect in
the sense that it does not correspond to the global minimum of
the free energy of the system; hence, the particle motion near
the glass transition will tend to drive the system toward a more
stable state. On the other hand, the correlated motion in a quasi-
two-dimensional liquid is present in the field of equilibrium
states of the system, and both the structural and thermal
properties of the system are independent of the time.
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