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In recent molecular dynamics simulatiori®hlys. Re. E 2003 68, 061508] we found that the deviation of the
single-particle displacement distribution from Gaussian form is a characteristic that is common to all phases
of a system confined to a quasi-two-dimensional geometry (liquid, hexatic, and solid). These deviations,
which intensify with increasing density and/or decreasing temperature, are a consequence of correlated particle
motion and are related to the emergence of a third dynamical relaxation mode in the intermediate time regime.
It was suggested that this collective motion is generated by superpositions of instantaneous normal mode
vibrations along diffusive paths. The diffusive paths are along the directions with strong bond-orientation
correlation and start to grow in amplitude rapidly on entry into the hexatic phase. In this paper we report the
results of a study of the relation between the distribution of the instantaneous normal mode frequencies and
the observed cooperative dynamics. We find that as the temperature decreases the distribution of the
instantaneous normal mode frequencies (the real and the imaginary parts) shifts to lower frequency and the
deviations of the single-particle displacement distribution from Gaussian form increase. The results indicate
that there is a relationship between the average time at which the cooperative dynamics of the system is
maximum, L) and the average value of the squared frequency for which the spectrum of the imaginary
normal modes is maximuniFw?,[J) that has the form Intg.d= In F-w3., O' + c(p), wherec(p) is a

density dependent constant.

I. Introduction liquidus density and extends into the hexatic and crystalline
phased*15For densities greater than the liquidus density, three

Single-particle motion in a condensed phase is affected byd namical relaxation processes were observed that include, at
interactions with many other particles. However, at short and . y P ’

long times, the many-body problem simplifies and the one-body intermediate times, a slowing down in the rate of growth of the

dynamics are deterministic and stochastic, respectively, in those?r:ﬁu dswe .;jls.placementt of a dpt?]rtlclel.gue(;o th.e c;ge deffecta As
time regimes. As a result, the distribution of the single-particle e density increases toward the solidus density, the dependence

displacement in each of these two limiting time regimes has a of the mean squarec_i displacement on time, at intermediate ti_mes,
Gaussian form. Deviations from the Gaussian distribution of changes from sublinear to zero. The onset of the long time

particle displacements that occur at intermediate times in three-raax"jltlon _mode corresponds_to t_he yme at which th_e dewa’upn
dimensional systems are very smiaft.In these cases, the first of the particle displacement distribution from Gaussian form is

correction to the Gaussian approximation is typically 10% or aLmzémml_Jm. '?]t thlslftlme, WP'Chh |ncrea|_s|es e?pongntlallyhyél_th
less of the leading term and successive terms are even smallert"® density, the seff-part of the van Hove function exhibits
ultiple maxima with respect towhile the distinct-part of the

However, stronger deviations from Gaussian behavior have been™ o ; L . .
observed in dense glass-forming liquids just above the glassyan Hove fun<_:t|on IS a maximum at the origin, thereby signaling
transitiond-7 jump dynamics. At long times the particle mean square

The situation in two dimensions is different. It has been displacement has diffusive character at all densities, including
shown, both computationafly! and experimentally2.1 that solid phase densities. The continuity of the character of the
the motion of dense two-dimensional liquids is heterogeneou

s, Particle displacement from the liquid phase, through the hexatic
and the single-particle displacement distribution has a large non-Pn@se; into the solid phase is striking and suggests that it arises
Gaussian component. Moreover, it is found that in these dense

from the same physical phenomenon. It has been argued that
liquids the single-particle displacement involves cooperative the drivers for the collective motions are superpositions of
stringlike motions in some time regimes. Recently, it was also instantaneous normal mode vibrations along paths that feature

found that the density dependence of the deviations from g activated hopping of particles. These diffusive paths are along

Gaussian form exhibits a sharp increase in its magnitude at thethe directions with strong bond-orientation correlatiéf
Normal mode analysis of the motion of a many-body system
T Part of the special issue “Hans C. Andersen Festschrift”. is rigorously possible in crystals for which the restoring forces
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acting on a particle are linear in the displacement of the particle correspond to negative curvature inside a single well while the
from its equilibrium positiort® The analysis is generated by diffusive unstable normal modes were associated with “double
expanding the total potential energy of the systeip second well” motions that correspond to barrier crossing. It should be
order (harmonic approximation) in the deviatiah,of the set noted that diffusion constants are descriptions of the particle

of atomic coordinates = {ry, ...,rn} from their lattice siteso: motion in the long time regime, whereas the instantaneous
normal modes have utility only in the short time regime.
U(r) = U(ry) + F(ro)o + 1,6(r o (1) Nevertheless, it turns out that there is enough information in
the instantaneous normal mode spectrum to cast light on the
Assuming the lattice configuration is a minimum ©of the (long time) dynamics of the systeth.

linear termF(rg) vanishes. The second-order term is the force-  In this study, we investigate the relation between the
constant matrixG, namely, the second derivatives of the distribution of the instantaneous normal mode frequencies and
potential energy with respect to the mass-weighted coordinatesthe observed cooperative dynamics in a quasi-two-dimensional
(the dynamical matrix). Its eigenvalues are the squares of theassembly of particles. Our goal is the establishment of a one-
vibrational frequencies of the syster, from which the to-one relationship between the character of the instantaneous
density of statesp(w), can be calculated. The eigenfunctions normal mode spectrum and the observed behavior of the mean
of the dynamical matrix are the normal modes of vibration squared single-particle displacement as a function of time and
(phonons). density; we do not attempt to calculate the diffusion constant.
In a liquid there exist no well-defined lattice sites, and most We find that as the temperature decreases the distribution of
configurations will not be minima of the potential (i.e., they the instantaneous normal mode frequencies (the real and the
have no unique position of mechanical stability about which imaginary parts) shifts to lower frequency and the deviations
the potential energy of the system can be expanded). Neverthe-of the single-particle displacement distribution from Gaussian
less, Zwanzig has argued that collective variables, analogousform increase. Our results indicate that the relation between the
to longitudinal and transverse phonons in crystals, do exist in average time at which the cooperative dynamics of the system
classical liquids? He noted, however, that their lifetimes are is maximum, [fn.{,) and the average value of the squared
exceedingly short except in the glassy state. The application of frequency for which the spectrum of the imaginary normal
normal mode analysis to the liquid state will, therefore, generate modes is maximum,Fw?,[J has the form InEn.,d =
a fraction of negative eigenvalues corresponding to imaginary |n E)_wﬁmx)_l + c(p), where c(p) is a density dependent
frequencies. Imaginary frequencies are a signature of negativeconstant.
curvature of the potential energy surface and are a measure of
barrier or saddle point crossing. Thus, the imaginary normal |I. Methods
modes reflect the fluidity of the system. The states that are Th del ¢ that tud ist of a sinale |
associated with the negative eigenvalues are termed unstable . N TO €l systems that we study consist of a singie fayer,
modes while those associated with the positive eigenvalues arewIth N . 2016 partlclgs, plgced ina quaS|-tW0-d|menS|onaI
termed stable modes. The density of states is, therefore, the surr?'mUIatlon box. The simulation box is rectangular in the

of two phvsically distinct parts plane, with side lengths in the ratidy = 7/(8V/3/2); it has a
Py y P height slightly greater than the particle diameter (see below).
[(w) 0= [pyw)H ()0 (2) Periodic boundary conditions were imposed in thandy

directions, but not in the direction. The calculations were

The temperature dependence of the distribution of imaginary carried out, and the results are reported below, in terms of the
frequencies has been studied extensiveR. reduced variables* = r/o, z* = Zlo, T* = kgTle, p* = po?, t*

The justification for using a harmonic analysis in liquids is = t(keT/mo?)'2 o* = w(kgT/mo?) ™2 m = 1, with o the
to be found in the restriction of that analysis to short times. diameter of the particlee the number densityn the mass of
According to the Maxwell description of viscoelasticity, for short  the particlet the time,w a normal mode frequency, and 3.689
times a liquid behaves like a solid and the stable modes give the value of the interparticle potential &t = 1.000. Although
the distribution of frequencies for particle displacements relative the particles can move in thedirection under the influence of
to the corresponding averaged lattice. The lattice is not stable,@ z-dependent one-body potential, we choose to characterize
however’ and rearranges. This rearrangement is governed byhe state of the system with the two-dimensional number density
the unstable modes. This idea has been followed up by manyp = N/A, whereA is the area of the of the simulation cell in the

authors?%-25 most notably by Keyes and co-work&<8 and xy-plane, since the height of the cdf, is constant in all of the
by Stratt and co-worke?% 3! via the definition of instantaneous ~ Simulations presented in this paper. The same number of
normal modes of a liquid. particles was present in the simulation cell for all of the densities

In the activated view of transport, the dynamics of the system Studied. To study the properties of the system with different
is viewed as a series of barrier crossings on the multidimensionalParticle densities, we changed the area of the simulation cell in
free energy surface. Goldstein has exploited this viewpoint in thexy-plane. The forms of the pair potential and the confinement
a discussion of the approach to the glass trans#fiofihe potential were chosen to model an assembly of constrained
hopp|ng rate between local minima was identified as the crucial colloid partiCIeS, since extensive eXperimental data are available
quantity in a theory of self-diffusiof? It is argued that the  for the single-particle mean squared displacement as a function
imaginary frequency distribution of the instantaneous normal Of time and density for this system (see section IV).
modes yields considerable information about the energy barriers  The interparticle potential was represented by
to diffusion34-3¢ In particular, a correlation between the fraction
of unstable normal modes and the self-diffusion constant has u(rt) = A(r* . 1-)‘0‘
been observetf37-38 However, imaginary normal modes fre- 2
guencies have been found to exist in glass-forming liquids below
the glass transitiof?3%-42 These nondiffusive unstable normal with A =2 x 1071° anda = 64. The functional form in eq 3
modes were associated with “potential shoulder” motions that is hard-core repulsion but has continuous derivatives. It is plotted

®3)
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Figure 1. (a) The pair potential used in this study. (b) The external potential confining the particles to a slab with heéight f20. The
external potential is plotted as a function of the reduced center of mass coordinate along the vertiegbag)snjeasured from the center of the
cell.

in Figure la. The confinement of the particles in the The lateral pressuré, was calculated from
directions is affected by the action of a one-baggyependent
external field. Different forms can be chosen for this field, the _ NkgT+ <W>
simplest being that for hard parallel walls. Then the extra degree I \

of freedom that is introduced in the thermodynamic description o

of the system is the spacing between those two walls. The shapevhere the angular brackets indicate an average value, the

(%)

of the potential that was chosen volume,V, is V = AH and the lateral virial\, is
2 2
uext(zk) = DE(Z")g (4) 1NN Xij + yij 8u(r)
W=-2yy————— (6)
285 T or

is such as to confine the system to form a slab with well- i =i
specified height. In eq 4,z* is the distance from the center
of the cell to the center of mass of the particle @ne 24, D

= 2 x 10?4 this potential confines the particles as if they were

The structural properties of the system were characterized
by calculating the radial distribution functiog(ryy)

in a cell with an effective height di = 1.20 (i.e.,z* = +0.10) A N N

and is shown in Figure Ib. The slab height is small enough so g(rxy) = —&‘ Z 5(rxyi — rxyj')D )
that the buckled phase is unstable even at the highest two- 2t N(N— 1)7=1 = ' '
dimensional number density studieg* (= 1.120), and the

transverse density distribution is homogenetius. whereryy, is the lateral vector component of the particle’s

The molecular dynamics (MD) simulations were carried out position, and the bond-orientation functiaBs(rxy)
in the microcanonical ensemble using the “velocity Verlet”
algorithm4546 The distance at which the potential was cut off Gg(ryy) = @g(0)ye(ry )0 (8)
was 1. and the time step used was, in reduced units 5 ) o
104 the associated rms fluctuation in total energy did not Whereye(ry) is the local order parameter descriptive of the
exceed one part in £0 hexagonal symmetry characteristic of close-packing in two
The initial configurations for the simulations & = 1.0000 dimensions; it is defined by
were taken from equilibrated configurations of a previous study n
that investigated the correlated motion of the partiéfeshe _ E i60; 9
system was further equilibrated for 1:2 10° MD steps. The Ve = n Zle (9)
simulations af™* = 1.0000 were performed for eight densities e

in the range 0.74& p* =< 1.120 that covers the liquid, hexatic, ~ The sum in eq 9 is taken over thenearest neighbors to particle
and solid phases. For-four denSItlpS,Z 0740, 0820, 0880, i, as determined by a two-dimensional Voronoi po|ygon
and 1.120, the behavior of the system at four other different constructiort’ We denote byg; the angle between the vector
temperaturesT* = 0.1000, 0.0100, 0.0010, and 0.0001, was r, . and an arbitrary fixed axis. The global translational order

studied as well. At each density the required temperature wasparameter is defined to be the sum of the Fourier components
created in a preequilibration stage by multiplying the velocities, of the density

every 1x 10° MD steps, by an appropriate constant. This stage
was repeated until the relative difference between the average 1N F
temperature of the system and the prescribed temperature did Or=—He"" (10)
not exceed 5x 107 in reduced units. Then the system was
further equilibrated for 1.2 10° time steps as for the case at

* = 1.0000. The equilibration and the data collection stage
were carried out without velocity rescaling (thus, in the
microcanonical ensemble) to ensure uninterrupted dynamical
paths. Nevertheless, the relative rms deviation of the average 1N
temloerature from the prescribed temperature was less than 5 O, = N Ve (11)
1074 =

whereG is a reciprocal lattice vector of the triangular two-
dimensional lattice. The corresponding global orientational order
parameter is defined by
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The lateral meansquaredisplacemem,z();(t), was calcu- R ML I BLM B I B B AL DM BB B

lated using the following expression 20'0,” 7]

18.0 -

1N a ]

2 - -

Wxﬁ)D= = [Fy(t) = 1y(0)] (12) oo ]

Ni= 1401 ]

We describe the time dependent deviation of the particle “o 120 .

displacement from Gaussian behavior by the non-Gaussian * 100l , . ]
parameter,a,(t). In two dimensions it has the following i melting "f“s"y

representation: 8.0 .

Eﬂrx (t) — Iy (0)]4D 6.0: freezing density 7]

o(t) = — Y o (13) sopo@ ]
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The calculation of the in-plane instantaneous normal mode
frequencies was carried out by evaluating tie 2 2N force- 1.00f-
constant matrix from the second derivatives of the potential

LI L L L L L L L R L B L R )

0.90

a ]
energy function with respect to the particle’s coordinates. Then % 0sok b b
the force-constant matrix was diagonalized yield2igeigen- s I )
values. These eigenvalues are the squares of khad2mal g oo N
modes frequencias. The second derivatives of the interparticle g 0601~ -
potential,u(r), are calculated from the following expressions: Z sl ]
g 040l A-A translational OP ]
82u(r) Xinijllazu(r) 1 au(l’) = OO orientational OP ]
oxay, 2 l 2= xoar ™ (14) s *¥r ]
X 0Y; ri L oor i S 020 7
C r )
S o.10F 4
32u(r) L0%u(r) ¥e au(r) s .
=——Xq v (15) 0001 C—0—o—0—00aahAL.
8Xiaxj r? 3I’2 i ri ar r=r, PP BT B | 1 sl
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2 2
a°u(r) N 97u(r) Figure 2. (a) Lateral pressure (in reduced units) as a function of the
= (16) two-dimensional number density. The low-density end of the plateau
9%;0Y; = 0%y, region atp* = 0.865 signifies the onset of the liquid phase while the
) 5 high-density end gt* = 0.895 marks the onset of the solid phase. (b)
a°u(r) N 97u(r) The global translational and orientation order parameters indicating that

=— 17 the hexatic phase is stable for 0.820p < 0.890.
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All the calculations were carried out with double precision so

that the difference of the character of the force-constant matrix
before and after the diagonalization was approximately one part %8
in 105, The eigenvalues were averaged over 400 configurations 0.7
separated by 1000 MD steps from each other. _08

Q real freq.
O imaginary freq.

<— liquid phase H solid phase —>

0.9

o
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The thermodynamic behavior as a function of the two- 04

j T TR NPT TN ST I I ST N .

dimensional number density of a system with the pair potential °‘3f

shown in Figure la, and of systems with other pair potentials, 0.2} )

have been reported previoudh?* The plateau region (or weak ol hexatic phase

van der Waals loop) observed in the lateral pressure density -

isotherm (Figure 2a) for the density range 0.86%* < 0.895 o POV PO PO SO T FOOT PO SURUT SUUUE L U
is the signature of a first-order phase transition. Figure 2b 0720 G765 0500 0840 0280 ogf)?k 0960 1.000 1.040 1.080 1120

displays the global translational and orientation order parameters. Figure 3. Fraction of the real and imaginary normal mode frequencies
asa functlon of density. From these plots we conclude that for 4¢75 fynction of the two-dimensional number densityTor= 1.0000.
densitiesp* < 0.860 the system is in the liquid phase, for The density range of the liquid, hexatic, and solid phases is indicated.
densities 0.8705 p* < 0.890 it is in the hexatic phase, while
for densitieso* = 0.900 the system is in the solid phase. These the imaginary frequencies is large (0-40.32). Only at higher
phase boundary identifications are consistent with the analysisdensities, inside the solid phage (~ 0.980), does the number
of the pair correlation and bond-orientation correlation functions of the negative eigenvalues decrease sharply to zerp* At
(not shown). 1.120 the values of 2 — 2 mode frequencies are larger than
Figure 3 displays the fraction of the instantaneous normal ~1.0 while the absolute values of two normal mode’s frequen-
modes with real and imaginary frequencies as a function of the cies are smaller thare 10 (they are equal to zero within the
two-dimensional number density. For densities that correspond machine precision). These two normal modes correspond to two
to liquid, hexatic, and low-density solid phases, the number of center of mass translations in thgplane. This is of course
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Figure 4. Lateral mean squared displacement (in reduced units) as a
function of the reduced timé?*, for two-dimensional number densities

0.870< p* < 0.920. The curves show the emergence of the three L
dynamic relaxation modes. The slope of the mean squared displacement 005 T o= 1120 b ]
for the longest relaxation mode is linear for all densities, indicating Hg* = 1.060 T
diffusive behavior. The time of the onset of the longest relaxation mode e p¥ = 0.980
increases exponentially with the density, and it corresponds to the time 0:041 o—o p* = 0.920 T
at which the deviation of the particle displacement distribution from _ - a—a p* = 0.880 E
Gaussian form is a maximum. o 003k [|—=P*=0§20 |
A el 0‘3‘30
C .
5.0 ey ] =
i ] 0.02 -
r o—o p¥ = 4
L o PO .
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| o—o p*x = (0§80 ] &
R A AN ] 0.001 : '
T | e R =R 860 ] 80 120
20p Figure 6. (a) Distribution of the natural logarithm of the positive
[ eigenvalues (the square of the real normal mode frequencies) for two-
3 dimensional number density in the range 0.Z4p* < 1.120 that spans
1or the liquid, hexatic, and solid phases. (b) The distribution of the natural
logarithm of the absolute value of the negative eigenvalues (the square
of the imaginary normals mode frequencies). The sum of the integrals
0‘%_2 1, 100 10 102 10° 10° 10° of the positive and negative eigenvalues is normalized to unity.

to the interparticle distance) while the distinct-part of the van

reduced timet*, for two-dimensional number densities 0.880p* < Hove functlo_n Iflg m_aX|mum_at the origin, thereby Slgnal!ng
0.920. Thex-axis is plotted on a logarithmic scale. The valuexgft*) Jump dy_”a”_“C§- > This behaVIOI' suggests that the mechanl_sm
at the maximum as well as the time at which the maximum appears Of diffusion involves an activated process of correlated particle
increase for higher densities. The latter depend exponentially on the hopping in random directions. As shown in Figure 3, the solid
density. phase densities for which such diffusive behavior is observed
are characterized by a substantial fraction of imaginary normal
true for every density. Note that, due to the type of periodic mode frequencies, implying that particles in the system easily
boundary conditions used, rotation of the center of mass aroundcross barriers on the free energy hypersurface. As the fraction
the z-axis is not possible; hence, the angular momentum is not of imaginary normal mode frequencies decreases the probability
conserved in this system. of correlated hopping, as expressed by the time for which the
The high fraction of imaginary instantaneous normal modes diffusive behavior appears (or 14§;.,), decreases as well.
found in the liquid, hexatic, and low-density solid phases Figure 6a shows the distribution of the natural logarithm of
correlates with the long time diffusive behavior found for these the squared real normal mode frequencies for several densities.
phases. Figure 4 displays the single-particle mean squaredThe location of the maxima for two-dimensional number
displacement for the density range 0.8%20p* < 0.920 that densities in the range 0.740 p* < 0.920 is the same (Inf*2)
corresponds to hexatic and solid phases. The plots exhibit three~ 0.8). Nevertheless, the profile is broadened toward lower
dynamical relaxation processes. At long times the particle meanfrequencies as the density decreases. This density range corre-
square displacement has diffusive character (i.e., the dependencgponds to that for which large deviations of the single-particle
of the mean squared displacement on time is linear) at all displacement distribution from Gaussian form (associated with
densities shown. The time at which there is an onset of the long correlated motion) were observed (Figure 5). For densijttes
time diffusive motion corresponds to the time at which the > 0.980, the locations of the maxima in Figure 6a shift toward
deviation of the single-particle displacement distribution from higher frequencies and the distribution narrower as the density
Gaussian form is a maximuntj,,, (Figure 5). At this time, increases. The distributions of the imaginary normal mode
which increases exponentially with the density, the self-part of frequencies are displayed in Figure 6b. Again, the width of the
the van Hove function exhibits multiple maxima (with respect distribution decreases as the density increases, ang*far

Figure 5. The non-Gaussian parametes(t*) as a function of the
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Figure 7. Pair distribution functiong(ry,), (left panel) and the bond-orientation functi@s(ryy), (right panel) forT* = 0.1000 and 0.0100 displaying
the characteristic structural properties of the liquid and solid phases, respectively.

0.980 the maximum is shifted toward higher frequency. The
number of imaginary frequencies fpr = 1.120 is zero. All 10°F
the plots of the distributions of the instantaneous normal mode F
frequencies are normalized such that the sum of the integrals
of the real and imaginary frequencies is 1. o 100'{
The fact that the distributions of the normal modes frequencies ¥ ¢
are peaked at the same location for liquid, hexatic, and low- £ 10'F
density solid phases (0.740 p* < 0.920) is striking, and it "z f _ A~
differs from what is found in three-dimensional systems. Seeley ¥ 10°F 4 - \

10'F

and Keyes found that the maximum of the density of states of ok (L ’ s }r: - 8:88%

a supercooled 3D liquid shifts to higher frequency as the density E A "' +—+T+=0.0100

) . ; ) ) - ) ) 7 Le— T* = 0.1000
increases$’ a behavior that is observed in our two-dimensional 10k » a4—aT* = 1.0000
system only for high densitieg > 0.980, where the long time :

diffusive behavior is not observed. It is interesting to note that 10'150.2 1.1 I 10" 107 10° 10° 10°
for the density range 0.748 p* < 0.920, that spans three t*

different thermodynamic phases, there is continuity of the fgjgyre 8. Lateral mean squared displacement (in reduced units) as a
character of the particle displacement, namely, strong deviationsfunction of the reduced time for the temperature range 1.6000 <
from Gaussian form due to correlated motigi® 0.0001 forp* = 0.820.
In a truly (discontinuous) hard sphere system, the thermo-
dynamic state is temperature independent. However, the pairFigure 7 displays the pair correlation function and the bond-
potential shown in Figure la contains a small region which is orientation correlation function fq* = 0.820 atT* = 0.1000
relatively soft. This is exploited in the present simulations to and 0.0100. Both correlation functions have short-range order
induce phase transitions, similar to those obtained by changingfor T* = 0.1000 (liquid close to the freezing point) and long-
the two-dimensional number density, by reducing the temper- range order foi™ = 0.0100 (solid close to the melting point).
ature. We predict the hexatic phase is stable in the temperature range
For four densitiesp* = 0.740, 0.820, 0.880, and 1.120, the 0.1000> T* > 0.0100.
behavior of the system at five temperatures in the range 1.0000 Figure 8 displays the single-particle mean squared displace-

< T* < 0.0001 was studied. Fgr* = 0.740 and forp* = ment forp* = 0.820 at five different temperatures. Similar to
1.120 the state of the system for all temperatures is liquid and the results shown in Figure 4, as the temperature decreases
solid, respectively. Fop* = 0.880 the hexatic phase & = below T* = 0.1000, a new relaxation process at intermediate

1.0000 is transformed to a solid phaseTat= 0.1000. The time emerges. The dependence of the mean squared displace-
most drastic phase changes were observedofor= 0.820. ment on time in this intermediate time regime is sublinear. At
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reduced time for the temperature range 1.0800* < 0.0001 forp* Figure 11. The fraction of the real and imaginary normal mode

= 0.820. The location of the maximum of(t*) at each temperature,  frequencies as a function of the temperature dor= 0.740, 0.820,

t*.... is indicated by the thin line. Note that the time of the onset of the 2nd 0.880.
longest relaxation mode of the mean squared displacement shown in

Figure 8 corresponds .. The fraction of the instantaneous normal modes with real and
imaginary frequencies as a function of the temperature for three
T T e T g densitiesp* = 0.740, 0.820, and 0.880 is displayed in Figure
0251~ [a—= T*=0.0001 . 11. The decrease of the imaginary normal modes fre-
F e 2 o000 ] quencies with temperature decrease is small. For example,
020k [* T*=0.1000{ _ for p* = 0.820 the fraction of the imaginary normal modes is
| a2 T =1.0000 ] 0.35 atT* = 0.1000 (liquid) while it is 0.33 af™* = 0.0100

(solid). The persistence of a large fraction of imaginary
frequencies in the liquid, hexatic, and solid phases suggests
, similarity of the dynamical behavior (cooperative motion) found
0.10f - in these phases.

L | The distributions of the real and imaginary instantaneous
normal mode frequencies fepf = 0.820 are shown in parts a

o,(t)

0.08 ] and b of Figure 12, respectively. In both cases, as the
i temperature decreases there is a continuous shift of the distribu-

0.00 pe e o i 0 10° tion toward lower frequency. The number of particles that
t* participate in a normal mode motion increases as the frequency

Figure 10. Magnification of Figure 9 showing the location of the ~ ©Of the normal mode decreases; hence, it is plausible to suggest
maximum ofo(t*) at T* = 1.0000 and 0.1000. Note that the maxima that the enhanced correlated motion observed as the temperature
that occur at short times for all temperatures originates from the decreases is due to excitations of long wavelength normal modes
deviation of the single-particle displacement from ballistic motion due above the free energy barrier for crossing. This argument implies
to the first collision event. a relation betweetf, ., and the value of the real and imaginary
frequency for which the corresponding spectrum of the normal
modes is maximump}Z, and —w’>, respectively. Figure 13
displays the value of Iif,,) as a function of Inp’2) and
In(—w;2,). Also plotted are the lines obtained from a linear
regression fit. The high value of the regression coefficients
(0.997 and 0.991) indicates that a linear relation between
In(t},.,) and In@™2), In(—w’2) does exist. The value of the
slope is—1.0005 and—1.0975 for the case of the real and
imaginary frequencies, respectively. Since diffusion is associated
with the imaginary frequencies, the relation betwégg and
—w?2 is of the form

long times the particle mean square displacement has diffusive
character for all temperatures including these that correspond
to the solid phase. Note that although the slope of the mean
squared displacement versus time at short time (describing the
ballistic motion) is the same for all temperatures (since the mean
squared displacement is a quadratic function of time) the

intercept is temperature dependent.

In Figure 9 the value of the non-Gaussian paramet*)
is plotted as a function of the reduced time fdr= 0.820 for
the temperature range 1.00@0 T* < 0.0001. The value of
a(t*) exhibits a maximum whose magnitude increases as the
temperature decreases. The time for whigft*) is maximum, o 1
t* . (indicated by thin lines in Figure 9) corresponds to the In (0= In Brop, 07 + c(p*) (18)
onset of long time diffusion (Figure 8). Figure 10 shomyt*)
on a different scale indicating the location of the maxima of wherec(p*) is a density dependent constant as is evident from
op(t*) at T* = 1.0000 and 0.1000. Note that the maxima that Figure 5 and Figure 6 where it is shown that as the density
occur at short times for all temperatures originate from the changest., changes but-w}%, does not.
deviation of the single-particle displacement from ballistic In Figure 14 we plot the same distributions as in Figure 12
motion due to the first collision evehit. The behavior of this with the squared frequencies scaled kyi*. The resulting
maximum as a function of the temperature is opposite to that distributions are centered at around the same value and differ
of the maximum that is due to correlated motion observed at only in their width. Exactly the same behavior is observed for
larger time. p* = 0.740 and 0.880 (Figure 15). These results are similar to
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The dashed lines are results obtained from a linear regression procedur

those obtained by Key#&sfor the temperature dependence of
the imaginary frequency distributiof(w; T)O= a(T)we ™,
However, for the solid phase at very high density,= 1.120,

e,
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Figure 14. Same as Figure 12 but with thermal scaling of the
frequenciesp*?kT*. The graphs show that the distributions are peaked
at around the same frequency.

temperature is to yield narrower distributions that are shifted
from high frequency to lower frequency.

IV. Discussion

The deviation of the single-particle displacement distribution
from Gaussian form is a result of correlated motion that has
also been observed in real quasi-two-dimensional colloid
suspension&13 The ubiquity of this behavior in colloid and
atomic systems is striking in view of the fact that the elementary
particle dynamics are different for the two systems. Specifically,
colloid particles exhibit Brownian motion with a self-diffusion
coefficient that depends on the viscosity of the suspending
medium, and their motion generates a nontrivial hydrodynamic
coupling that is transmitted by the suspending medium and is
concentration dependent. The appropriate equations of motion
involve a complex combination of fluctuating forces due to the
solvent and systematic forces due to hydrodynamic coupling.
In contrast, atomic particles move without friction, and the
dynamics are correctly represented with Newton’s equations of
motion. Nevertheless, as already indicated, it is found that the
overall behavior of the single-particle mean squared displace-
ment determined from molecular dynamics simulations is the
same as that observed in a real quasi-two-dimensional colloid
assembly.

where all the normal mode frequencies are real, we observe a The principal difference between the use of Newtonian

different behavior. Figure 16 indicates that the distributions of

mechanics in a molecular dynamics simulation and Langevin

the normal mode frequencies are peaked at around the samenechanics in a Brownian dynamics simulation is associated with

value without thermal scaling. The effect of decreasing the

high-frequency motions. In particular, the random force that
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T T T T T T T T T T T T tems are anomalous in a number of respects. These interactions
0.50| - are, in three dimensions, long ranged, thereby generating
o= T*=0.00H——u 1 . : .

e—e T*=0.010] o ) complicated many-particle effects. However, the confinement
0.40 == T*=0.100 of the fluid drastically affects the range and character of the
’ a2 T =1.000 hydrodynamic interactions. In a quasi-one-dimensional system

ydrodynamic q %
that range is restricted to the channel witfthn a quasi-two-
dimensional system the hydrodynamic coupling between two
particles falls off ag—2, and it has been found that there is a
remarkable insensitivity of the large separation behavior of that
interaction to changes in particle densitylt can be proven
that the correction to the pair hydrodynamic interaction due to
third particles (i.e., the first-order correction in packing fraction)
vanishes. The next order (four-body effect) does not vanish but
is expected to be very small. For most practical purposes,
8.0 *10'0 therefore, even at high particle concentrations, one may regard
Inw™) the hydrodynamic interaction at large distances in a quasi-two-
Figure 16. Distribution of the normal mode frequencies fdr= 1.120. dimensional system as a long-ranged, yet purely pairwise effect.
There are no imaginary frequencies at this_high-dens_ity _soli_d. Note This surprising result is unique to the quasi-two-dimensional
that in contrast to the behavior at lower densities, the distributions are two-plate geometry. It has the consequence that the absence of
peaked at around the same frequency for all temperatures. . - . . . . -
direct hydrodynamic interactions in the simulation mechanics
appears in the Langevin equation of motion in Brownian will notlead to qualitative error. It is for these reasons that the
dynamics simulations has a correlation time that is infinitesi- behavior of the mean squared particle displacement in colloid
mally short, which generates different particle dynamics in the and atomic systems is qualitatively the same.
two types of simulations for a time interval that is smaller than  Returning now to the calculations reported in this paper, the
the average time between Brownian patrticle collisions. However, correlated motion of the particles is found to become relatively
whether the equation of motion has Newtonian or Langevin more important as the density is increased or the temperature
form, the mean squared displacement of a particle at very shortis decreased. The continuity of the collective motion from the
time is a quadratic function of time and at very long time is a quasi-two-dimensional liquid phase through the hexatic phase
linear function of time*® The many collisions that occur inthe and into the crystalline phase suggests that it has a common
intermediate and long time regimes transform the deterministic physical basis. We suggest identifying that common physical
behavior of a molecular dynamics simulation to stochastic basis as the distribution of instantaneous normal mode frequen-
behavior and, eventually, hydrodynamic flow. It is worth noting cies. In particular, it is shown that the time for which the
that hydrodynamic interactions in quasi-two-dimensional sys- cooperative motion in the system is maximuipay, is related
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