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ABSTRACT: Chemical equilibria of multimerizations in systems with small
numbers of particles exhibit a behavior seemingly at odds with that observed
macroscopically. In this paper, we apply the recently proposed expression of
equilibrium constant for binding, which includes cross-correlations in reactants’
concentrations, to write an equilibrium constant for the formation of clusters larger
than two (e.g., trimer, tetramer, and pentamer) as series of two-body reactions.
Results obtained by molecular dynamics simulations demonstrate that the value of
this expression is constant for all concentrations and system sizes, as well as at an
onset of a phase transition to an aggregated state, where densities in the system
change discontinuously. In contrast, the value of the commonly utilized expression
of equilibrium constant, which ignores correlations, is not constant and its variations can reach few orders of magnitude. Considering
different paths for the same multimer formation, with elementary reactions of any order, yields different expressions for the
equilibrium constant, yet, with exactly the same value. This is also true for routes with essentially zero probability to occur. Existence
of different expressions for the same equilibrium constant imposes equalities between averages of correlated, along with uncorrelated,
concentrations of participating species. Moreover, a relation between an average particle number and relative fluctuations derived for
two-body reactions is found to be obeyed here as well despite couplings to additional equilibrium reactions in the system. Analyses
of transfer reactions, where association and dissociation events take place on both sides of the chemical equation, further indicate the
necessity to include cross-correlations in the expression of the equilibrium constant. However, in this case, the magnitudes of
discrepancies of the uncorrelated expression are smaller, likely because of partial cancellation of correlations, which exist on both the
reactant and product sides.

■ INTRODUCTION
One of the most powerful postulations in chemistry is the ability
to assign a constant, albeit temperature-dependent, to a
chemical reaction from which the system’s composition at
equilibrium can be determined by, for example, amounts of
reactants put in. This equilibrium constant, K, is normally
defined as the ratio between concentrations (activities) of
products over reactants, each of which is raised to the power of
its stoichiometric coefficient. That is, for the reaction

A B C D+ +F (1)

the equilibrium constant takes the form

K
c c
c c

c( )C D

A B

+

(2)

where each concentration of each component, cX, is divided by a
reference concentration c⌀ to render the ratio dimensionless.
Alternatively, K is defined by

K e G RT/ (3)

where ΔG⌀ is the standard Gibbs free energy change when α
moles of A react with β moles of B to form γ moles of C and δ
moles of D, given all components are at their standard

conditions. These two definitions for K are usually presented
in textbooks together without giving importance which has
precedence.1,2 The reason is that if we assume the chemical
potential of each component, relative to that at standard state, is
proportional to the logarithm of its concentration

RT
c
c

lnX X
X=

(4)

and apply the condition of equilibrium ΔG = 0, these two
definitions of K are equivalent. However, the relation in eq 4 is
not always valid. Although it can be derived for a mixture of
noninteracting ideal gases and observed for macroscopic
systems, it is ill-defined for chemical reactions with small
numbers of molecules. In these cases, the system is subject to
substantial fluctuations in composition, where configurations
with cX = 0 are possible, and therefore, an ensemble average of μX
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cannot be properly defined. To avoid these singularities, one can
define ⟨μX⟩ by eq 4 utilizing the ensemble average of the
concentration, ⟨cX⟩. Then, given the definition in eq 3, the
expression of K that follows is the same as in eq 2, where the
concentration of each component is an ensemble average of that
concentration. It turns out, the invalidity of eq 4 is not only at
singular points of cX = 0 but whenever the X component in finite
systems participates in a two-body (or higher order) reaction. As
a consequence, the system’s properties, such as concentrations,
are not homogeneous functions, as observed in experiments3−11

and simulations,12−16 investigating binding processes with small
numbers of molecules. Furthermore, for small systems, the
conventional expression of K (eq 2) is not constant upon
changes in volumes and/or numbers of particles,17−23 abolishing
its importance in predicting the properties of chemical reactions.
On the other hand, by definition, the value of K in eq 3 is
constant, however, taken on its own, this definition is of very
limited use because it does not provide any information on
reactions conducted at different concentrations or system sizes.

Recently, we utilized the definition of K in eq 3 to derive an
equivalent expression in terms of ensemble averages of
concentrations, applicable also for reactions at different
conditions. To this end, a simple, elementary, two-body reaction

A B AB+ F (5)

is considered. It is found that K is not given by the expression
widely applied in the literature,24−33 ⟨cAB⟩c⌀/(⟨cA⟩⟨cB⟩), but
must include cross-correlations in reactants’ concentrations,
yielding the expression34,35

K
c

c c V
c

( / )
AB

A B AB
=

(6)

where δAB equals zero for hetero-dimerizations (A and B are
distinct components) and equals one for homo-dimerizations (A
and B are the same components, i.e., A ≡ B). The subtraction of
the reciprocal of volume term, 1/V, in homo-dimerizations,
excludes self-correlations in particle number. For large systems,
correlations between particles, as well as the term 1/V, can be
ignored; thus, eq 6 reduces to the commonly known expression.
Using different arguments, Rubinovich and Polak36 obtained the
same expression of K as that shown in eq 6.

Being derived for elementary reactions, the expression ofK for
a multistep (complex) reaction, which can proceed through
different mechanisms, depends on the path considered. This is
because averages of correlated concentrations originating from
different reaction steps cannot be canceled out in the expression
of K describing the total complex reaction. In this paper, we
study multimerizations as models for such complex reactions. It

is demonstrated that despite producing different expressions for
the equilibrium constant, all mechanisms (paths) yield the same
value of K. This is true for paths composed of several two-body
reactions, as well as for routes composed of elementary
reaction(s) with higher-order body correlations, which, in
practice, are not probable to occur. Hence, in order for a system
to be in equilibrium, several relations between averages of
correlated, and also uncorrelated, concentrations of different
components must hold.

Throughout the manuscript, we will refer to multimerization
as a process in which like-particles form a cluster larger than two
and are in equilibrium with smaller clusters or monomers
present at appreciable concentrations. This is to be distinguished
from aggregation, in which like-particles of different cluster sizes
phase-transformed abruptly to a state of one large cluster that is
by far the predominant component in the system. It is interesting
to note the expressions of K derived here produce values that
stay constant also at an onset of a phase transition to an
aggregated state, where concentrations of smaller-sized clusters
change discontinuously.

■ RESULTS AND DISCUSSION
Consider a system at constant temperature, T, and volume, V, in
which NA

total particles of A are able to bind with, and dissociate
from, one another to form clusters of different m-mer sizes, Am,
where 1 ≤ m ≤ NA

total (hereafter, monomers, A1, will be denoted
as A). The behavior of all components in the system is assumed
ideal, that means, except for association and dissociation events,
interparticle interactions do not exist or can be ignored. All
potential reactions between the Am species are possible and,
depending on the system investigated, quantities characterizing
specific chemical equilibria can be of interest. Nevertheless, a
quantity often sought for is the equilibrium constant, Km, of the
multimerization reaction

mA AmF (7)

wheremmonomers ofA associate to form anm-mer, fromwhich
the corresponding free energy can be obtained. The reaction in
eq 7 is not necessarily elementary, i.e., does not proceed via
single step. More specifically, for m ≥ 3, there are different
chemical paths to realize the formation of the Am product,
however, the most probable are likely those which require the
lowest-order correlations between particles. For associations,
this means sequences of two-body reactions. This is because
concerted reactions of three or more particles are not likely to
occur, especially in the ideal-gas approximation (low concen-
trations), due to the small probability to find all m particles
simultaneously next to one another.

Figure 1. Average number ofm-mers multiplied bym as a function of length of the cubic simulation box for systems withNA
total = 3, 4, and 5 of R1 series

of simulations. The well-depth value of the Lennard-Jones potential acting between the particles, ϵAA, is indicated for each system.
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In the first series of simulations, R1, we considered three
systems, NA

total = 3, 4, and 5, at various concentrations. The pair
interaction energy between A particles, in each of these three
systems, was chosen to support an almost complete trans-
formation from an Am state, where m = NA

total, to an all-
monomeric state upon augmentingVwithin a desired range (see
the Computational Details section for more information). This
behavior of the systems is shown in Figure 1 by plotting the
compositions at equilibrium as a function of length of the cubic
simulation box, Lbox.
Two-Body Reaction Paths. Chemical equilibria of all

possible elementary two-body reactions are shown in Figure 2
for systems withNA

total = 3, 4, and 5, which, among others, specify
the different paths connecting reactants and products of the
multimerization described in eq 7. For a two-body binding
reaction between an i-mer and a j-mer to form a (i + j)-mer

A A Ai j i j+ +F (8)

we define the corresponding two-body binding constant Ki+j
2b ,

which equals

K
c

c c V
c

( / )i j
b A

A A ij

2 i j

i j

=+
+

(9)

where δij is the Kronecker delta (i.e., it equals 1 if i = j and 0
otherwise). These bimolecular association constants are marked
in Figure 2 and refer to the net specified equilibrium reactions.

Because free energy changes are state functions, not all of the
Ki+j

2b’s are independent. Thus, there is a smaller, irreducible, set of
Ki+j

2b’s (whose size depends onm) from which the other Ki+j
2b ’s can

be derived from. It is also to be noted that the not drawn
horizontal equilibria in Figure 2 for NA

total = 4 and 5 are transfer
(or exchange) reactions and will be discussed below.

The equilibrium constant of eq 7, Km, obtained by sequences
of bimolecular reactions sketched in Figure 2 are displayed in
Figure 3 for the three systems. In all cases, the resulting Km is
constant, independent of concentration, as it should be. For
NA

total = 4 and 5, there is more than one path to form a tetramer
and a pentamer, respectively. For example, the left route in
Figure 2, describing successive two-body additions of mono-
mers, leads to the following equilibrium constant

K K
c

c c V
c

( / )
m

j

m

j
b l

m
A

l
m

A A l1

1

1
2 2

1
1

1

l

l

m 1
= =

=
+

=

= (10)

which is different than that obtained from the route on the right.
Different reaction paths produce different expressions for Km,
some of which with no trivial dependency. However, because
free energy changes are state functions, the different expressions
for Km must have the same value. As exhibited in Figure 3, this is
indeed the case, a property which imposes dependencies on the
distribution of species in the system. For example, the
concentrations of, and second-order correlations between,
monomer, dimer, and trimer obey the relation

Figure 2. Chemical equilibria, assuming two-body-reactions, for theNA
total = 3, 4, and 5 systems (left, middle, and right panels). The two-body binding

constants are indicated in red and correspond to the net chemical equations.

Figure 3. Equilibrium constant ofm-mer formation frommmonomers, Km, form = 3 (trimer), 4 (tetramer), and 5 (pentamer) considering a sequence
of bimolecular reactions for the three systems shown in Figure 1, respectively. Blue lines (circle symbols) are constructed by successive growths of the
cluster by onemonomer (eq 10). ForNA

total = 4 and 5, there are additional independent routes of two-body reactions; therefore, in green lines (diamond
symbols), we present also,K4 = (K1+1

2b )2K2+2
2b andK5 = (K1+1

2b )2K1+2
2b K2+3

2b , which correspond to the paths on the right side in Figure 2. For comparison, the
values of the corresponding uncorrelated expressions, Km′ defined in eq 12, are shown by dashed red lines (square symbols).
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c

c

c c V c c V

c c c c

( 1/ ) ( 1/ )A

A

A A A A

A A A A

2

3

2 2

2 3

=
(11)

which becomes trivial for large systems, where the terms 1/V
and correlations can be ignored. In Figure 3, the commonly
applied expression for equilibrium constant, Km′ , which ignores
all correlations between particles

K
c

c
cm

A

A
m

m
m 1

=
(12)

is also shown. In contrast to the behavior of Km evaluated by any
path,Km′ is not constant as a function of concentration, especially
in a regime of small volumes when clustering is substantial and
the discrepancies reach several orders of magnitude. Even at
large volumes, when it becomes constant, Km′ does not approach
Km because self-correlations are significant for systems with
small values of NA

total. For completeness, in Figure SI-1 of the
Supporting Information (SI), we present the two-body binding
constants of reactions with at least one monomer, K1+j

2b . Also
here, all equilibrium constants are constant for all values of Lbox,
whereas the corresponding expressions not accounting for two-
body correlations between particles, K1+j′2b, are not. Furthermore,
the discrepancy ofK1+j′2b fromK1+j

2b at large volumes decreases with
NA

total and increases with j.
The fact that not all Ki+j

2b ’s are independent can also be
illustrated by constructions of thermodynamic cycles, where the
sum of free energy changes in a closed cycle should be equal to
zero. The magnitude of deviation from zero is an estimate to
error in the computation. When applied to our systems, as
shown in Figure 4, the results indicate that the deviations are
smaller than 0.2 kJ/mol except for the largest two Lbox values,
where they reach 1.3 kJ/mol in closing one cycle of theNA

total = 5
system. Obviously, obtaining converged results is more difficult
for systems with a larger volume and number of particles.

Transfer Reactions. As mentioned above, the unmarked
horizontal reactions in Figure 2 of the type

A A A Ai j i j1 1+ ++ +F (13)

correspond to transfer reactions, where in both forward and
backward directions, association and dissociation occur. Taking
cross-correlations into account, the expression of the equili-
brium constant is given by

K
c c V

c c V

/

/i j
A A i j

A A i j
( 1)

trans ( 1)

( 1)

i j

i j

1

1

=
[ ]

[ ]+ +
+

+

+

+ (14)

where the standard concentration, c⌀, cancels out because the
number of particles, thus phase space, is the same on both sides
of the chemical equation. Alternatively, the same reaction can be
described by subtracting a two-body binding reaction, Aj + A ⇌
Aj+1, from another two-body binding reaction,Ai +A⇌Ai+1, and
consequently its equilibrium constant equals

K
K

K

c c c V

c c c V

( / )

( / )i j
i

b

j
b

A A A j

A A A i
( 1)

trans 1
2

1
2

1

1

i j

j i

1

1

= =+ +
+

+

+

+ (15)

Clearly, the expressions in eqs 14 and 15 must be equal and
independent of concentration. As shown in Figure 5, such is the

Figure 4. Thermodynamic cycle closures of the two-body-reaction
model for NA

total = 4 and 5 of R1 series of simulations. For the former,
there is only one independent cycle involving two-body association
constants, whereas, for the latter, there are two independent cycles. The
cycles are depicted in Figure 2 with colors of the arrows matching the
colors of the curves here. The free energy changes are defined by ΔGi+j
= −RT ln Ki+j

2b . The dashedmagenta lines at y = 0 denote perfect closure.

Figure 5. Equilibrium constants, K1+3
trans and K1+4

trans, for the transfer
reactions, A + A3 ⇌ 2A2 and A + A4 ⇌ A2 + A3, respectively, of theNA

total

= 4 and 5 systems. Green (diamonds) and orange (triangles pointing
up) curves were calculated by eq 14, whereas brown (circles) and blue
(triangles pointing down) were calculated by eq 15. The corresponding
expressions ignoring correlations, K1+3′trans and K1+4′trans, are presented by
dashed lines (squares) in red and magenta, respectively.
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case for the three unmarked transfer reactions of the equilibrium
schemes in Figure 2. Again discrepancies, which are small in
magnitude, appear only at large volumes. Furthermore, the
corresponding uncorrelated expressions

K
c c

c ci j
A A

A A
( 1)

trans i j

i j

1

1

=+ +
+

+ (16)

are not constant, especially at small values of Lbox. It should be
noted though, their deviations from the value of the equilibrium
constant (either eqs 14 or 15) are much smaller, less than an
order of magnitude, than for binding reactions (see Figures 3
and SI-1), which can reach several orders of magnitudes. It is
likely that cross-correlations, present on both sides of transfer
reactions (eq 13), partially cancel each other.
Paths Involving Three-, or Higher-Order, Body

Reactions. We argued above that three-, or higher-order,
body reactions are not likely to occur for reactants with
unrestricted motions at low concentrations. Still, due to the state
function character of a change in free energy, it should be
possible to compute equilibrium constants by these implausible
paths. Even if these reactions would practically never proceed via
these mechanisms, the probabilities of observing the states on
both sides of the chemical equation (each in equilibrium with
other viable reaction mechanisms) do permit to calculate the
equilibrium constant. Here, we show that these calculations
yield results equal to those obtained by any other possible path.
We start by writing the expression of Km for the multimerization
reaction described in eq 7 for the case when all m monomers
react simultaneously, that is, when eq 7 describes an elementary
reaction. Because this m-body reaction is concerted, cross-
correlations in reactant concentrations should include (m − 1)
successive subtractions of self-correlations, and therefore, them-
body equilibrium constant takes the form

K
c

c i V
c

( / )
mb A

i
m

A
1 1

0
1

m

m m

terms

1
=+··· +

=
Ö́ÖÖÖÖÖÖÖÖÖÖ ÆÖÖÖÖÖÖÖÖÖÖÖ

(17)

where the summation label ofm-terms of 1’s in the subscript ofK
indicates a simultaneous reaction between m monomers. The
same expression was obtained by Rubinovich and Polak,36

however, without the claim, it corresponds to a concerted m-
body reaction. Definitely, other n-order body reactions (3 ≤ n <
NA

total − 1) involving clusters of larger size are also possible,
where the expressions of the corresponding equilibrium
constants can be easily inferred. For example, the equilibrium
constant of a three-body reaction between two monomers and a
dimer to form a tetramer is K1+1+2

3b = ⟨cAd4
⟩c⌀ d

2

/⟨cA(cA − 1/V)cA d2
⟩.

We compute Km for m = 3, 4, and 5 in the systems NA
total = 3, 4,

and 5, respectively, using all possible n-order body reactions and
present the results in Figure 6. To eliminate ambiguity, we
specify the mechanisms by outlining the elementary reactions
involved and the total expressions of Km in Table SI-1. Figure 6
demonstrates that all possible mechanisms, including those with
different orders of body reactions, of the multimerization of eq 7
yield the same value of Km. Here, again, different expressions
representing the same quantity ofKm establish relations between
averages of correlated, or uncorrelated, concentrations of
different species in the system. For example, equating eq 10
with eq 17 results in

c i V
c c V

c
( / )

( / )

i

m

A
i
m

A A i

i
m

A0

1
1

1
1

2
1

i

i

=
=

=

= (18)

We note, even though all different paths (mechanisms)
produce the same value for the equilibrium constant, they would
not yield the same value for the corresponding reaction rates.
Again, some (higher-order body reaction) mechanics are not
likely to occur at all.
Multimerizations in SystemswithDifferentNA

total. In the
analyses above, we did not attempt to compare values of Km
extracted from systems with different total numbers of
monomers. The reason is because the well-depth values of the
interaction energy, ϵAA, are different (resulting from the aim to
get continuous transformations between a predominantly
monomeric state and a predominantly aggregated state within
a certain range of Lbox as exhibited in Figure 1), and therefore,
the values of Km, for the same m, across different systems are
different as well. To rectify this situation, we conducted a second
series of simulations, R2, where the binding potential is the same
for all systems, ϵAA = 10 kJ/mol, however, the total number of
monomers was changed in the range of 2 ≤ NA

total ≤ 12, keeping
its total concentration constant (0.03245 M). In Figure 7a, we
plot the value of K3 and K4 extracted from systems with different
NA

total. K3 is calculated by two mechanisms, one involving two-
body and the other three-body reactions. K4 is computed by five
expressions, representing paths of two-, three-, and four-body
reactions. The results indicate all different mechanisms, which
lead to different expressions of Km, give the same value, and are
invariant of system size. The same conclusion is obtained by
plotting the two-body equilibrium constants K1+j

2b , defined by eq
9 for i = 1, in Figure 7b. The significance of these results is that
the equilibrium constant does not depend on whether the
reaction in question is the only reaction taking place in the
system or on whether the reactant and/or product engage with
many other equilibrium reactions involving foreign compounds.
This is obvious from the definition of the equilibrium constant in
eq 3 and is illustrated, for example, by K1+1

2b (≡K2) for NA
total = 2,

where dimerization of monomers and dissociation of dimers are
the only two possible processes in the system, and forNA

total = 12,

Figure 6. Equilibrium constant for m-mer formation, Km, the same as
that calculated in Figure 3 but here considering paths involving higher-
than-two-body reactions. As before, K3, K4, and K5 are calculated from
systems with NA

total = 3, 4, and 5, respectively. The results of different
order body reactions are very similar, and as references, we also show
those obtained by the two-body reaction route of gradual monomer
additions, Km = ∏j=1

j = m−1 K1+j
2b (eq 10), presented in Figure 3.
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where the reactant and product take part in 10 and 9,
respectively, additional equilibrium reactions.

In Figure 7a, we also plot the values of K3′ and K4′, the
expressions ignoring correlations in the systems as defined in eq
12. As expected, large deviations are observed for small NA

total,
which decrease with an increase in a total number of monomers.
However, at approximatelyNA

total = 11, there is an abrupt increase
in the values of K3′ and K4′. Analyses of the concentrations of
monomers, trimers, and tetramers (Figure SI-2a,b) indicate a
sharp decrease exactly around this value of NA

total for these three
species, and as a result, the curves of K3′ and K4′ experience a
discontinuous increase because the monomer concentration is
raised to a power of 3 and 4 in the denominator. These sharp
drops in concentrations aremost likely due to an onset of a phase
transition to an aggregated state. Indeed, there is an increase in
the concentration of the largest possible cluster in the system
(Figure SI-2c) at that point, however, apparently with a
continuous character. It is worth emphasizing that this onset
of phase transition (aggregation), although drastically affects K3′
and K4′, does not influence the values of K3 and K4, which stay
constant also across this point.
Relative Fluctuations in Particle Numbers. Previously,

we showed that for homo- and hetero-dimerizations, the average
number of bound particles is related to relative fluctuations in
the system.34,35 Accordingly, for the two-body reaction
described in eq 8, we can write the average number of a cluster
of size (i + j) as

N
l N N l N N N

1
( , ) , ( )A

A A A A A ij
i j

i j i j i j i j

=
[ ]+

+ + + (19)

where the relative fluctuations between two variables ζ and η are
defined by l(ζ, η) = ⟨ζη⟩/(⟨ζ⟩⟨η⟩) − 1. In Figure 8a, we test this
equality on R2 series for systems with NA

total ≥ 5, 6, and 8 for
dimer, trimer, and tetramer, respectively. This is because the
relation is trivial for systems with a smaller number of particles
(which includes the entire R1 series). The results obtained
exhibit an almost perfect agreement.

For systems withNA
total ≥ 4, the sum (i + j) can be decomposed

into different sets of integers (not including zero). If i + j = k + s,
then equating the expression of ⟨NA di+j

⟩ with that of ⟨NA dk+s
⟩ (both

using eq 19) yields the relative fluctuations l[NA di+j
,NA di

(NA dj
− δij)]

equal the relative fluctuations l[NA dk+s
, NA dk

(NA ds
− δks)], or more

explicitly

N N N

N N

N N N

N N

( )

( )

( )

( )
A A A ij

A A ij

A A A ks

A A ks

i j i j

i j

k s k s

k s

=+ +

(20)

This relation is examined in Figure 8b forNA
total = 4 of R2 series of

simulations. Although some discrepancies are noticeable, only
for the smallest system, the agreement falls just outside the
estimated error bars.
Calculating Km from the Ratio of Probabilities of

Occurrences. Examining the expression ofKm derived from the
m-body reaction, eq 17, it is easy to show that for the private case
of NA

total = m, this expression can also be written as the ratio of
probability to observe the system in the m-mer state (Am) to
probability to observe all m A particles as monomers. More
explicitly, if fAm and fmA are fractions of frames (or probabilities)
in which all particles are clustered and in which all particles are
monomers, respectively, Km takes the form

K
f

m f
Vc( )m

A

mA
m 1

NA m

m

total =
!= (21)

which is equivalent to eq 17 and corresponds to expressions
obtained by Ouldridge and co-workers for dimerization37 and
hexamer formation38 for the private case discussed here.

Last, and likely least, we inspect again the densities of different
species of R1 series of simulations presented in Figure 1. It is
evident the predominant components at equilibrium are either
monomer or largest-mer possible, and hence, it might be
tempting to approximate the behavior of these systems by a two-
state model. This means densities of other species (states) are
ignored, and it is enough to determine the fraction of frames of
only one state ( fAm or fmA), where the fraction of frames of the
second state is obtained by subtraction from one. Assessing this
approximation (Figure SI-3) reveals very poor agreement with
the exact results of eq 21. If we choose to determine fAm ( fmA), it
is only for a regime in which the state of Am (mA monomers) is
hardly observed that Km is adequately approximated.

Figure 7. Results from R2 series of simulations (where the association energy between monomers, ϵAA = 10.0 kJ/mol, is the same for all systems). (a)
Equilibrium constants for trimer (K3) and tetramer (K4) formation from the corresponding number ofmonomers as a function ofNA

total. The value ofK3
is calculated by a product of two two-body reactions (K1+1

2b K1+2
2b ) as well as by a three-body reaction (K1+1+1

3b ). K4 is calculated in five different ways: by a
product of three two-body reactions [K1+1

2b K1+2
2b K1+3

2b and (K1+1
2b )2K2+2

2b ], by a product of two-body and three-body reactions (K1+1
2b K1+1+2

3b and K1+1+1
3b K1+3

2b ),
and by a four-body reaction (K1+1+1+1

4b ). See Table SI-1 of SI for explicit expressions of all equilibrium constants.We also present as dotted lines the value
of the expressions ignoring correlations, K3′ (magenta) and K4′ (cyan), as defined in eq 12. (b) Equilibrium constants of two-body reactions involving a
monomer, K1+j

2b . In both plots, the magnitudes of the estimated errors are smaller or similar to the size of symbols.
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■ CONCLUSIONS
For large systems, the expression of equilibrium constant for a
complex reaction, which can proceed via several alternate
mechanisms, is known to be independent of the mechanism
considered. This is because cross-correlations between particle
numbers are negligible, and therefore, average concentrations
originating from different reaction steps can be canceled out in
nominator and denominator of the total equilibrium constant,
leaving only those corresponding to the net reaction. However,
for finite systems, cross-correlations must be taken into account
and cancellations of concentrations are, in general, not possible.
This means, for each reaction mechanism (path), there is a
unique expression of the equilibrium constant. At the same time,
equilibrium constants are defined by free energy changes and as

state functions, their values must be path independent. In this
paper, we showed that different expressions of the equilibrium
constant for a multimer formation, arising from different routes,
all yield the same value. Thus, equalities between the different
expressions characterize equilibrium, which translates to equal-
ities between averages of concentrations (correlated or
uncorrelated). Put another way, the condition for equilibrium
includes additional restrictions on the distribution of particle
numbers in the systems. At first glance, it might appear
tantalizing that an expression of equilibrium constant corre-
sponding to a path not likely to occur, such as a concerted
approach of five monomers to form a pentamer, would give the
same value as those derived from path(s) that do happen.
However, this is indeed the case, and reaction routes which do
not take place can also be utilized for calculating K as long as
there is at least one physically viable path connecting reactants
with products.

Another characteristic of equilibrium constant demonstrated
in this work is that its value is constant for all system sizes (down
to the smallest system possible) and concentrations, as should be
the case. In contrast, the commonly utilized expression
applicable for the thermodynamic limit, which ignores
correlations, produces values that vary significantly with changes
in volume and the total number of particles. It is interesting to
point out that for transfer reactions, the error of ignoring
correlations is much smaller than that for corresponding
association and dissociation reactions. This can be explained
by partial cancellation of correlations, which appear on both
sides of the chemical equation of transfer reactions.

For hetero- and homo-dimerizations, magnitudes of relative
fluctuations are related to average concentrations. This equality
is found to be valid also here, thus for larger-sized cluster
formations, where reactants and products are coupled to other
equilibrium reactions. When considering clusters of sizes equal
to or larger than four, the different ways to partition the integer
representing the cluster size into sum of smaller integers
establish relations between correlated averages of different
particle numbers in the system (eq 20).

■ COMPUTATIONAL DETAILS
The model system consists of NA

total single-site A particles
interacting solely via Lennard-Jones (LJ) potential with a
diameter σAA = 0.20 nm and a well-depth ϵAA. Newton’s
equations of motion were applied to propagate the system in
time in such a way the resulting trajectory generated a canonical
ensemble (NA

total, V, T) at a temperature T = 300 K and a volume
V = Lbox

3 , with Lbox the length of the cubic simulation box.
Two series of simulations were designed. In the first, R1, we

studied systems with NA
total = 3, 4, and 5, and modified

systematically Lbox. For each NA
total, the value of ϵAA was chosen

such that within the range of Lbox considered, an almost
complete transformation occurred from amonomeric state to an
aggregated state (see Figure 1). The values of ϵAA, together with
the range of Lbox investigated, are presented in Table 1. In the
second series of simulations, R2, the well-depth of the
interactions between the particles was constant, ϵAA = 10 kJ/
mol, and we changed the total number ofA particle in the system
in the range 2 ≤NA

total ≤ 12 and concomitantly Lbox, such that the
concentration NA

total/V equals 0.03245 M (i.e., 0.01954
molecules/nm3). This resulted in a box length of 4.678 and
8.500 nm for the smallest and largest systems, respectively.

Molecular dynamics (MD) simulations were conducted by
the software package GROMACS version 4.6.539 (single-

Figure 8. (a) Relation between the average number of dimer (blue),
trimer (red), and tetramer (green) and relative fluctuations in the
system as described by eq 19. The results are obtained from R2 series
for systems with NA

total ≥ 5, 6, and 8 for dimer, trimer, and tetramer,
respectively. The dashed black line, y = x, is plotted as a reference. (b)
Validation of the equality described in eq 20 for the case i + j = k + s = 4
(i = 1, j = 3, and k = s = 2) for simulations with 8, or larger, number of
total A particles.
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precision). A time step of 0.002 ps was employed for integrating
the equations of motion and a mass of 10.0 amu was assigned to
each A particle. The temperature was maintained by applying a
Nose−́Hoover thermostat40,41 with a chain length42 of 2 and a
coupling strength set to 0.1. The equations of motion were
propagated by the velocity Verlet algorithm, in which the kinetic
energy is determined by the average of the two half-steps.
Periodic boundary conditions were applied along all three
Cartesian axes, and at every step, motion of center of mass of the
system was removed. The LJ potential was evaluated up to a
cutoff distance of 2.0 nm. Based on the location of the first
minimum of the radial distribution function, two A particles are
defined as clustered (bonded) for rAA < 0.35 nm.

For all simulations, equilibration for approximately 5 μs was
conducted prior to data collection. In R1 series forNA

total = 3 and
4, at each value of Lbox, data were collected for 400 μs. However,
forNA

total = 4 with Lbox ≥ 14 and for NA
total = 5, the data collection

time was doubled, thus for 800 μs. In R2 series, the data
collection step for each NA

total was run for 1600 μs.
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Figure SI-1: The set of equilibrium constants for two-body elementary reactions involving at least

one monomer, K2b
1+j, defined by Eq. 9 with i = 1, for the three systems of R1 series of simulations

(solid lines with symbols). The values of the corresponding uncorrelated expressions, K ′2b1+j =

〈c
A1+j
〉c∅/(〈c

A
〉〈c

Aj
〉), are shown as well (dotted lines).
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Table SI-1: Different expressions to calculate Km (for m = 3, 4, and 5) depending on the elemen-

tary reaction(s) considered. As shown in Fig. 6, all expressions yield the same value.

Km
highest order

correlations
elementary reaction(s) total expression of Km
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two-body
A+A 
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Figure SI-2: Average concentrations of several m-mers as a function of N
total
A for R2 series of

simulations. (a) For monomer, (b) for trimer and tetramer, (c) for the largest multi-mer (cluster)

possible, thus for Am with m = N
total
A . Note that for all simulations in this series, the concentration

of N total
A /V is constant at 0.03245 M .
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Figure SI-3: Approximations of Km for a private case of m = N
total
A assuming a two-state model.

The curves in orange (square symbols) are calculated by Ktsm1
m = fAm(V c∅)m−1/[m!(1 − fAm)],

whereas the curves in blue (diamonds) are computed by Ktsm2
m = (1 − fmA)(V c∅)m−1/[m!fmA],

where fAm and fmA are fractions of frames, or probabilities, of observing the system in Am and

mA (i.e., all m A particles are monomers) states, respectively. As references for exact results, we

plot in maroon (circles) Km = fAm(V c∅)m−1/[m!fmA] (Eq. 21).
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